Effect of Structural Wall Plan Density on Performance of RC Shear Wall Buildings Designed as Per Indian Standards

2021 ◽  
pp. 157-165
Author(s):  
K. K. K. Reddy ◽  
P. Haldar
2012 ◽  
Vol 170-173 ◽  
pp. 3594-3597
Author(s):  
Hai Tao Wan ◽  
Peng Li

Reinforced concrete (RC) shear wall component is a very important lateral force-resisting member which is widely used in China. Its seismic behavior has a great impact on the seismic performance of the overall structure. Damage of some RC shear wall structures under the earthquake is caused by the damage of shear wall components, So shear wall components are an essential seismic members. However, the test datum are not enough to study the performance of RC shear wall components, Therefore, Finite element simulation of RC shear wall components is performed by software ABAQUS in the paper. Through comparing with the finite element simulation and the test of load - displacement skeleton curve, failure mode and steel bar strain, the result shows that the finite element simulation can more accurately simulate the situation of the test, verifying the finite element simulation is the most important research tool besides test.


2021 ◽  
Vol 4 (1) ◽  
pp. 16
Author(s):  
Leonardus Setia Budi Wibowo ◽  
Dermawan Zebua

Indonesia is one of the countries in the earthquake region. Therefore, it is necessary to build earthquake-resistant buildings to reduce the risk of material and life losses. Reinforced Concrete (RC) shear walls is one of effective structure element to resist earthquake forces. Applying RC shear wall can effectively reduce the displacement and story-drift of the structure. This research aims to study the effect of shear wall location in symmetric medium-rise building due to seismic loading. The symmetric medium rise-building is analyzed for earthquake force by considering two types of structural system. i.e. Frame system and Dual system. First model is open frame structural system and other three models are dual type structural system. The frame with shear walls at core and centrally placed at exterior frames showed significant reduction more than 80% lateral displacement at the top of structure.


2018 ◽  
Vol 111 ◽  
pp. 14-30 ◽  
Author(s):  
Tao Wang ◽  
Qingxue Shang ◽  
Xiaoting Wang ◽  
Jichao Li ◽  
Zi’ang Kong

2019 ◽  
Vol 35 (1) ◽  
pp. 333-360 ◽  
Author(s):  
Ryan Hoult ◽  
Helen Goldsworthy ◽  
Elisa Lumantarna

This research investigates the development of analytical fragility functions for reinforced concrete shear wall buildings in Australia. A building stock for the city of Melbourne is used in conducting an assessment of these types of structures. The assessment uses the best information available for selecting the building parameters applicable to the low-to-moderate seismic region, site soil class, expected earthquake ground motions, and site response. The capacity spectrum method is used to derive vulnerability functions for low-, mid-, and high-rise reinforced concrete shear wall buildings. Although there is a paucity of earthquake damage data available in Australia, some comparisons are made using the results from the fragility functions derived here to the damage data from the Newcastle earthquake in 1989.


2019 ◽  
Vol 13 (03n04) ◽  
pp. 1940003 ◽  
Author(s):  
Xiaoyan Yang ◽  
Jing Wu ◽  
Jian Zhang ◽  
Yulong Feng

A novel structural wall with hinge support and buckling restrained braces (BRBs) set in the base (HWBB) is studied. HWBB can be applied to precast manufacturing due to its considerable ductility and the separate loading mechanism in HWBB–frame structure. In elastic stage, BRBs play a brace role to make the hinged wall resist horizontal forces like a shear wall. BRBs dissipate seismic energy through plastic and hysteresis effects after yielding and the damage is only concentrated in BRBs. The performance of an HWBB is equivalent to a shear wall structure with excellent ductility and stable energy dissipation capacity. Numerical analysis indicates that the hinged wall body in the HWBB well controls the deformation mode of the structure, avoiding the concentration of story drifts, thereby protecting the remaining parts of the structure. It is revealed that the moments of the wall body will generate significant increments after BRBs yielding, and the Seismic Intensity Superposition Method is proposed to calculate the moments. In this method, nonlinear response of an HWBB can be regarded as the sum of the responses of two elastic corresponding structures excited with two parts of the seismic intensity, respectively. Modes and moments equations of the hinged wall with uniform distribution of stiffness and mass are derived, and calculation results coincide with that of the nonlinear time history analysis (NHA). For a more general case, the white noise scan method is proposed to solve the structure’s natural characteristics and to further calculate the response. Finally, the post-yielding moment calculation method and the process based on design response spectrum are proposed. It is proved that the moments from proposed Seismic Intensity Superposition Method can envelop most of the moments from NHA, and it is a good estimate of the response of HWBB in nonlinear stage.


2014 ◽  
Vol 919-921 ◽  
pp. 1012-1015
Author(s):  
Pei Song Liu ◽  
Liang Bai

Bottom frame-shear wall structure is a kind of special structure, due to the inharmonious relationship between the frame and masonry walls in bearing lateral capacity and deformation ability, the difference of vertical stiffness in the bottom frame-shear wall structure is bigger, so the structural seismic performance is poor. A six layer bottom frame-shear wall structure seismic strengthening project is established in order to contrastive analyze two kinds of reinforcement scheme, which are additional RC shear wall and additional buckling constraints. Calculation and analysis results show that through setting buckling constraint support in the bottom layer of reinforced concrete frame and selecting rational mechanical parameters, can increase lateral stiffness, reduce the lateral deformation and realize the effect of multichannel fortification. At the same time, the advantage of easy to implement is belong to bottom frame-shear wall structure.


Sign in / Sign up

Export Citation Format

Share Document