Seismic Reinforcement Application of Buckling-Restrained Braces in the Bottom Frame-Shear Wall Structure

2014 ◽  
Vol 919-921 ◽  
pp. 1012-1015
Author(s):  
Pei Song Liu ◽  
Liang Bai

Bottom frame-shear wall structure is a kind of special structure, due to the inharmonious relationship between the frame and masonry walls in bearing lateral capacity and deformation ability, the difference of vertical stiffness in the bottom frame-shear wall structure is bigger, so the structural seismic performance is poor. A six layer bottom frame-shear wall structure seismic strengthening project is established in order to contrastive analyze two kinds of reinforcement scheme, which are additional RC shear wall and additional buckling constraints. Calculation and analysis results show that through setting buckling constraint support in the bottom layer of reinforced concrete frame and selecting rational mechanical parameters, can increase lateral stiffness, reduce the lateral deformation and realize the effect of multichannel fortification. At the same time, the advantage of easy to implement is belong to bottom frame-shear wall structure.

2015 ◽  
Vol 9 (1) ◽  
pp. 602-609
Author(s):  
Zheng Yinrui ◽  
Zhu Jiejiang

An immune genetic algorithm (IGA) is proposed to optimize the reinforced concrete (RC) frame-shear wall structures. Compared with the simple genetic algorithm (SGA), this algorithm has adaptive search capabilities for the future knowledge being used in the process of population evolution. Since the concrete grade of floors and the layout of walls are translated to binary codes, the implementation of this algorithm is not affected by the complexity of the structures. With I-typed vaccine, the continuous vertical stiffness of structure is ensured; With II-typed vaccine, the structures conforms to all the specifications which including floor shift angle, floor displacement ratio and period ratio. At the element level, the optimizing results satisfy all the specifications required by the current Chinese Codes. In this way, a computer program is created to get optimum design schemes.


2014 ◽  
Vol 8 (1) ◽  
pp. 450-454 ◽  
Author(s):  
Ling Yuhong ◽  
Lin BiaoYi ◽  
Ke Yu ◽  
Chen QingJun

This paper introduced the reconstruction practice and detailing of a high-rise reinforced concrete frame-shear wall structure. To fully utilize the old structure and meet the requirement of the reconstructed structure, certain measures have been put forward. The enlarging of concrete pile cap and adding strip foundation-beam were used to support the new added shear wall. The reconstruction concept detailing of the roof of basement, the enlarging of the beam or column sections and the application of the inclined column are introduced. The whole structure analysis shows that the reconstructed structure is safe enough to meet all the requirement of the designing code and the settlement observation shows that the deformation of the whole structure in gravity is small. The paper shows the design and detailing of the reconstructed engineering is effective and will be valuable to the similar engineering structures.


2010 ◽  
Vol 163-167 ◽  
pp. 2653-2656
Author(s):  
Li Sun ◽  
Hai Xia Zhang ◽  
De Zhi Liang ◽  
Zhe Li

In this paper, FBG sensors are used to monitor and analyze the response of reinforced concrete frame-shear wall model in shaking table test in order to study the placement of sensors and the protection of the transmission lines. Based on the experiment data, the destructive mode and dynamic characteristics in earthquake are obtained through (by) analyzing the dynamic response of the structures. The experiment results show that using FBG is effective in monitoring the structures.


2013 ◽  
Vol 639-640 ◽  
pp. 957-960
Author(s):  
Li Dong Yu ◽  
Hong Li

The purpose of the this study was to find the influence of local members of high-rise reinforced concrete frame-shear wall structure failed in different position.Referred to the basic requirements against progressive collapse provided by JGJ03-2010,Based on alternate path method ,This paper presents an analysis procedure that made Linear static analysis to a modal of 24-storey frame-shear wall structure designed according to the current code with SAP2000.The results show that once the edge column failed ,the structure will collapse.However,the corner shear wall constitute little threat to the progressive collapse.After the local members failed ,the lower part of the building contribute to the load path and it can results in axial force ruleless in beams,which make against to load bearing if they are tensile forces.The concentrated tensile stress appears around the continuous beam,and it is possible to be broken early after local member failed if close to the failed shear wall.


2011 ◽  
Vol 94-96 ◽  
pp. 1031-1035 ◽  
Author(s):  
Xiu Ling Li

The experiment system of a three-floor reinforced concrete frame-shear wall eccentric structure has been built based on Matlab/Simulink software environment and hardware/software resources of dSPACE. And then a shaking table test for the hosting structure with and without magnetorheological (MR) dampers is implemented subjected to three different ground motions. The FBG strain sensors were used in this experiment for strains measurement of the columns and monitoring of the appearing and developing of cracks under different stages. The experimental results show that the control strategies of MR dampers have significant effect on axial force of the column.


2011 ◽  
Vol 199-200 ◽  
pp. 874-877
Author(s):  
Hai Liang Wang ◽  
Li Wang ◽  
Li Sheng Liu ◽  
Bi Jun Wang

According to the 20 layers reinforced concrete frame-shear wall structure building, we carried on blasting vibration monitoring in Qingdao Cross-harbor Tunnel Guide Line Project. The monitoring data of vertical vibration velocity and vertical vibration frequency had been analyzed. The results show vertical vibration velocity and vertical vibration frequency had part of intrinsic association. Vertical vibration velocity was enlarged on the top of the building. Vertical vibration frequency was in the range of 101-102 order of magnitude.


2019 ◽  
Vol 803 ◽  
pp. 314-321 ◽  
Author(s):  
Maryam Bypour ◽  
Benyamin Kioumarsi ◽  
Mahdi Kioumarsi

In this paper, the behavior of steel plate shear wall (SPSW) in the reinforced concrete frame (RCF) has been studied numerically. Three different connections have been proposed to connect SPSW to RCF. In the first connection, fish plates, while in the second one, combination of fish plates and studs transfer forces between SPSW and RCF. In the third connection, there is no direct connection between the infill plate and RCF, and additional steel frame has been used for connecting of the infill plate. The results demonstrate that, load carrying capacity increases in all the specimens comparing the reference RCF. Investigating the formation sequence of plastic hinges in different specimens demonstrates that there is different sequence in the specimens with different connections.


2013 ◽  
Vol 788 ◽  
pp. 538-541
Author(s):  
Peng Zhang ◽  
Fu Ma

Coupling beam, the first line resisting earthquake, is directly related to the overall performance of the shear wall structure. Using the large general finite element analysis software ANSYS, the coupling beam span-depth ratio is 2~3 different reinforcement scheme in finite element analysis. Analysis on the ductility performance of reinforced concrete coupling beams in shear wall structure in three fields: the concrete strength grade, the longitudinal reinforcement ratio and the stirrup ratio, provides a basis for the design of the structure and to provide a reference for similar studies.


2011 ◽  
Vol 243-249 ◽  
pp. 740-745 ◽  
Author(s):  
Qing Ning Li ◽  
Qing Mei Liu ◽  
Lin Zhao

A steel reinforced concrete frame-concrete core wall structure is taken as the research object in this paper. The whole space finite element models are established by software ETABS, modal analysis, response spectrum method and elastic time-history analysis are conducted. And static elastio-plastic time history analysis of the high-rise structure is conducted by software MIDAS/GEN. Seismic response of the high-rise structure is analyzed under medium earthquake and rare earthquake , elastic deformation is calculated under conventional earthquake and elastic-plastic deformation is calculated under rare earthquake. The results show that the structure can meet the requirements of no-damage under light earthquake, repairable under medium earthquake and no-collapse under strong earthquake.


Sign in / Sign up

Export Citation Format

Share Document