Cross-Talk Between Cell Mechanics and Biochemical Signalling Pathways via Modulation of Nucleocytoplasmic Shuttling of Transcription Factors: A Novel Approach to Study Fibroblasts in Breast Cancer Environments

IRC-SET 2018 ◽  
2019 ◽  
pp. 153-171
Author(s):  
Kia Hui Lim
2011 ◽  
Vol 227 (1) ◽  
pp. 204-212 ◽  
Author(s):  
Daniela Berg ◽  
Claudia Wolff ◽  
Katharina Malinowsky ◽  
Kai Tran ◽  
Axel Walch ◽  
...  

2021 ◽  
Author(s):  
Roni H. G. Wright ◽  
Viviana Vastolo ◽  
Javier Quilez Oliete ◽  
Jose Carbonell-Caballero ◽  
Miguel Beato

Abstract Background: Breast cancer cells enter into the cell cycle following progestin exposure by the activation of signalling cascades involving a plethora of enzymes, transcription factors and co-factors that transmit the external signal from the cell membrane to chromatin, ultimately leading to a change of the gene expression program. Although many of the events within the signalling network have been described in isolation, how they globally team up to generate the final cell response is unclear. Methods: In this study we used antibody microarrays and phosphoproteomics to reveal a dynamic global signalling map that reveals new key regulated proteins and phosphor-sites and links between previously known and novel pathways. T47D breast cancer cells were used, and phosphosites and pathways highlighted were validated using specific antibodies and phenotypic assays. Bioinformatic analysis revealed an enrichment in novel signalling pathways, a coordinated response between cellular compartments and protein complexes. Results: Detailed analysis of the data revealed intriguing changes in protein complexes involved in nuclear structure, epithelial to mesenchyme transition (EMT), cell adhesion, as well as transcription factors previously not associated with breast cancer proliferation. Pathway analysis confirmed the key role of MAPK following progesterone and additional hormone regulated phosphosites were identified. Full network analysis shows the activation of new signalling pathways previously not associated with progesterone signalling in breast cancer cells such as ERBB and TRK. As different post-translational modifications can mediate complex crosstalk mechanisms and massive PARylation is also rapidly induced by progestins, we provide details of important chromatin regulatory complexes containing both phosphorylated and PARylated proteins. Conclusions: This study contributes an important resource for the scientific community, as it identifies novel players and connections meaningful for breast cancer cell biology and potentially relevant for cancer management.


2010 ◽  
Author(s):  
George A. Calin ◽  
Shuxing Zhang ◽  
Waldemar Priebe

2021 ◽  
Vol 12 (2) ◽  
Author(s):  
Yawei Wang ◽  
Yingying Sun ◽  
Chao Shang ◽  
Lili Chen ◽  
Hongyu Chen ◽  
...  

AbstractRing1b is a core subunit of polycomb repressive complex 1 (PRC1) and is essential in several high-risk cancers. However, the epigenetic mechanism of Ring1b underlying breast cancer malignancy is poorly understood. In this study, we showed increased expression of Ring1b promoted metastasis by weakening cell–cell adhesions of breast cancer cells. We confirmed that Ring1b could downregulate E-cadherin and contributed to an epigenetic rewiring via PRC1-dependent function by forming distinct complexes with DEAD-box RNA helicases (DDXs) or epithelial-mesenchymal transition transcription factors (EMT TFs) on site-specific loci of E-cadherin promoter. DDXs-Ring1b complexes moderately inhibited E-cadherin, which resulted in an early hybrid EMT state of epithelial cells, and EMT TFs-Ring1b complexes cooperated with DDXs-Ring1b complexes to further repress E-cadherin in mesenchymal-like cancer cells. Clinically, high expression of Ring1b with DDXs or EMT TFs predicted low levels of E-cadherin, metastatic behavior, and poor prognosis. These findings provide an epigenetic regulation mechanism of Ring1b complexes in E-cadherin expression. Ring1b complexes may be potential therapeutic targets and biomarkers for diagnosis and prognosis in invasion breast cancer.


2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Regan Odongo ◽  
Asuman Demiroglu-Zergeroglu ◽  
Tunahan Çakır

Abstract Background Narrow spectrum of action through limited molecular targets and unforeseen drug-related toxicities have been the main reasons for drug failures at the phase I clinical trials in complex diseases. Most plant-derived compounds with medicinal values possess poly-pharmacologic properties with overall good tolerability, and, thus, are appropriate in the management of complex diseases, especially cancers. However, methodological limitations impede attempts to catalogue targeted processes and infer systemic mechanisms of action. While most of the current understanding of these compounds is based on reductive methods, it is increasingly becoming clear that holistic techniques, leveraging current improvements in omic data collection and bioinformatics methods, are better suited for elucidating their systemic effects. Thus, we developed and implemented an integrative systems biology pipeline to study these compounds and reveal their mechanism of actions on breast cancer cell lines. Methods Transcriptome data from compound-treated breast cancer cell lines, representing triple negative (TN), luminal A (ER+) and HER2+ tumour types, were mapped on human protein interactome to construct targeted subnetworks. The subnetworks were analysed for enriched oncogenic signalling pathways. Pathway redundancy was reduced by constructing pathway-pathway interaction networks, and the sets of overlapping genes were subsequently used to infer pathway crosstalk. The resulting filtered pathways were mapped on oncogenesis processes to evaluate their anti-carcinogenic effectiveness, and thus putative mechanisms of action. Results The signalling pathways regulated by Actein, Withaferin A, Indole-3-Carbinol and Compound Kushen, which are extensively researched compounds, were shown to be projected on a set of oncogenesis processes at the transcriptomic level in different breast cancer subtypes. The enrichment of well-known tumour driving genes indicate that these compounds indirectly dysregulate cancer driving pathways in the subnetworks. Conclusion The proposed framework infers the mechanisms of action of potential drug candidates from their enriched protein interaction subnetworks and oncogenic signalling pathways. It also provides a systematic approach for evaluating such compounds in polygenic complex diseases. In addition, the plant-based compounds used here show poly-pharmacologic mechanism of action by targeting subnetworks enriched with cancer driving genes. This network perspective supports the need for a systemic drug-target evaluation for lead compounds prior to efficacy experiments.


Sign in / Sign up

Export Citation Format

Share Document