Study on Microstructure, Mechanical, and Thermal Properties of High-Entropy Alloys

Author(s):  
Sushil Kumar ◽  
Satpal Sharma
Metals ◽  
2020 ◽  
Vol 10 (12) ◽  
pp. 1569
Author(s):  
Nicolae Filipoiu ◽  
George Alexandru Nemnes

High entropy alloys (HEAs) are still a largely unexplored class of materials with high potential for applications in various fields. Motivated by the huge number of compounds in a given HEA class, we develop machine learning techniques, in particular artificial neural networks, coupled to ab initio calculations, in order to accurately predict some basic HEA properties: equilibrium phase, cohesive energies, density of states at the Fermi level and the stress-strain relation, under conditions of isotropic deformations. Known for its high tensile ductility and fracture toughness, the Co-Cr-Fe-Ni-Al alloy has been considered as a test candidate material, particularly by adjusting the Al content. However, further enhancement of the microstructure, mechanical and thermal properties is possible by modifying also the fractions of the base alloy. Using deep neural networks, we map structural and chemical neighborhood information onto the quantities of interest. This approach offers the possibility for an efficient screening over a huge number of potential candidates, which is essential in the exploration of multi-dimensional compositional spaces.


Crystals ◽  
2020 ◽  
Vol 10 (4) ◽  
pp. 278 ◽  
Author(s):  
Uttam Bhandari ◽  
Congyan Zhang ◽  
Shizhong Yang

Refractory high-entropy alloys (RHEAs) Al20+xCr20-xMo20-yTi20V20+y ((x, y) = (0, 0), (0, 10), and (10, 15)) were computationally studied to obtain a low density and a better mechanical property. The density functional theory (DFT) method was employed to compute the structural and mechanical properties of the alloys, based on a large unit cell model of randomly distributed elements. Debye–Grüneisen theory was used to study the thermal properties of Al20+xCr20-xMo20-yTi20V20+y. The phase diagram calculation shows that all three RHEAs have a single body-centered cubic (BCC) structure at high temperatures ranging from 1000 K to 2000 K. The RHEA Al30Cr10Mo5Ti20V35 has shown a low density of 5.16 g/cm3 and a hardness of 5.56 GPa. The studied RHEAs could be potential candidates for high-temperature application materials where high hardness, ductility, and low density are required.


2014 ◽  
Vol 783-786 ◽  
pp. 2370-2375
Author(s):  
Harihar Sistla ◽  
Joseph W. Newkirk ◽  
F. Frank Liou

High entropy alloys have attracted great interest due to their flexibility in composition accompanied with very interesting properties, which make these materials candidates for further research. The formation of single solid solution phases as a preference to complex mixtures of intermetallic phases leads to good mechanical and thermal properties. Additive manufacturing in the form of Laser deposition presents us with a very unique way to manufacture near net shape metallic components with advanced materials. The present study focusses on the characterization of High entropy alloys manufactured through laser deposition. The alloy system considered for this study is (AlFeCoCrNi). The ratio of aluminum to nickel was decreased to observe the transition of the solid solution from a BCC structure to a FCC structure. The lattice parameter increased from .288 nm to .357 nm and the hardness decreased from Hv 670 to Hv 149 respectively. The effect of composition on thermodynamic variables, microstructure and mechanical properties were analyzed.


2021 ◽  
Vol 200 ◽  
pp. 113912
Author(s):  
Jiatong Zhu ◽  
Jie Xu ◽  
Ping Zhang ◽  
Xuanyu Meng ◽  
Shuyao Cao ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document