scholarly journals Molecular dynamics research of mechanical, diffusion and thermal properties of CoCrFeMnNi high-entropy alloys

Author(s):  
A. V. Korchuganov ◽  
I. S. Lutsenko
2021 ◽  
Author(s):  
Shin-Pon Ju ◽  
Chen-Chun Li

Abstract The melting mechanism of single crystal and polycrystalline Nb 20.6 Mo 21.7 Ta 15.6 W 21.1 V 21.0 RHEAs was investigated by the molecular dynamics (MD) simulation using the 2NN MEAM potential. For the single crystal RHEA, the density profile displays an abrupt drop from 11.25 to 11.00 g/cm 3 at temperatures from 2910 to 2940 K, indicating all atoms begin significant local structural rearrangement. For polycrystalline RHEAs, a two-stage melting process is found. In the first melting stage, the melting of the grain boundary (GB) regions firstly occurs at the pre-melting temperature, which is relatively lower than the corresponding system-melting point. At the pre-melting temperature, most GB atoms have enough kinetic energies to leave their equilibrium positions, and then gradually induce the rearrangement of grain atoms close to GB. In the second melting stage at the melting point, most grain atoms have enough kinetic energies to rearrange, resulting in the chemical short-ranged order (CSRO) changes of all pairs.


2021 ◽  
Vol 119 (20) ◽  
pp. 201907
Author(s):  
Tengfei Zheng ◽  
Jiecheng Lv ◽  
Yuan Wu ◽  
Hong-Hui Wu ◽  
Shaofei Liu ◽  
...  

Author(s):  
Gen Lin ◽  
Jianwu Guo ◽  
Pengfei Ji

As a novel alloy material with outstanding mechanical properties, high-entropy alloys have a wide range of promising applications. By establishing individual Au, Ag, Cu, Ni, and Pd nanolaminates with faced-centered-cubic...


Sign in / Sign up

Export Citation Format

Share Document