Large-Box Direct Shear Test of Municipal Solid Waste: A Case Study

Author(s):  
Lalit Mohan Pathak ◽  
Sharique Khan
2017 ◽  
Vol 5 (2) ◽  
Author(s):  
Nurul Priyantari ◽  
Supriyadi . ◽  
Devi Putri Sulistiani ◽  
Winda Aprita Mayasari

2D geoelectrical resitivity measurement and direct shear test has been conducted to determine soil type and soil strength on land settlement Istana Tidar Regency housing, Jember. Resistivity measurement is conducted at two line that have latitude 08.10’102” – 08.10’108” S, 113.43’404” – 113.43’408” E (line 1) dan 08.10’102” – 08.10’108” S, 113.43’410” – 113.43’414” E (line 2). Soil specimen were taken at 3 point, 2 point at line 1 and 1 point at line 2. Based on result of 2D geoelectrical resistivity measurement and direct shear test, this location was dominated by clay, silt and sandy silt are included in the type of cohesive soils. Soil strength of this type is capable to support light bulding contruction one or two floors.


2021 ◽  
Vol 13 (7) ◽  
pp. 3991
Author(s):  
Jeongjun Park ◽  
Indae Kim ◽  
Jeong-Ku Kang

This study investigated the effect of vegetation plant roots on the stability of the cover slopes of solid waste landfills. A large direct shear test and a root tensile strength test were conducted to quantify the effect of rooted soil of revegetation plants on the increment in shear strength of the soil as a method to protect the cover slope of solid waste landfills. In the large direct shear test, an increase in the shear strength of the ground with the presence of roots was observed, and the root reinforcement proposed in the literature was modified and proposed by analyzing the correlation between the root diameter and the tensile strength according to water content. The stability of the slope revegetation of a landfill facility, considering the root reinforcement effect of revegetation, was calculated by conducting a slope stability analysis reflecting the unsaturated seepage analysis of rainfall conditions for various analysis conditions, such as the gradient, the degree of compactness, the thickness of the cover, and the rooted soil depth of the landfill facility.


2016 ◽  
Vol 2 (2) ◽  
pp. 39-44
Author(s):  
Oscar Cabeza ◽  
◽  
Alfredo Alonso ◽  
Yoel Lastre ◽  
Jorge Medina ◽  
...  

2017 ◽  
Vol 35 (8) ◽  
pp. 890-898 ◽  
Author(s):  
Ezio Ranieri ◽  
Gabriela Ionescu ◽  
Arcangela Fedele ◽  
Eleonora Palmieri ◽  
Ada Cristina Ranieri ◽  
...  

2018 ◽  
Vol 2018 ◽  
pp. 1-7 ◽  
Author(s):  
Yanhui Cheng ◽  
Weijun Yang ◽  
Dongliang He

Structural plane is a key factor in controlling the stability of rock mass engineering. To study the influence of structural plane microscopic parameters on direct shear strength, this paper established the direct shear mechanical model of the structural plane by using the discrete element code PFC2D. From the mesoscopic perspective, the research on the direct shear test for structural plane has been conducted. The bonding strength and friction coefficient of the structural plane are investigated, and the effect of mesoscopic parameters on the shear mechanical behavior of the structural plane has been analyzed. The results show that the internal friction angle φ of the structural plane decreases with the increase of particle contact stiffness ratio. However, the change range of cohesion is small. The internal friction angle decreases first and then increases with the increase of parallel bond stiffness ratio. The influence of particle contact modulus EC on cohesion c is relatively small. The internal friction angle obtained by the direct shear test is larger than that obtained by the triaxial compression test. Parallel bond elastic modulus has a stronger impact on friction angle φ than that on cohesion c. Under the same normal stress conditions, the shear strength of the specimens increases with particle size. The shear strength of the specimen gradually decreases with the increase of the particle size ratio.


Sign in / Sign up

Export Citation Format

Share Document