Inheritance of reaction to Pseudomonas lachrymans in pickling cucumber

Euphytica ◽  
1982 ◽  
Vol 31 (3) ◽  
pp. 847-855 ◽  
Author(s):  
J. M. Dessert ◽  
L. R. Baker ◽  
J. F. Fobes
Author(s):  
L.A. Chistyakova ◽  
O.V. Baklanova ◽  
E.L. Makarova ◽  
Yu.V. Bortsova

Приведены результаты испытания нового перспективного партенокарпического гибрида огурца корнишонного типа F1 Энеж 21, созданного селекционерами агрохолдинга «Поиск», в условиях открытого грунта в Северо-Западном, Центральном и Волго-Вятском регионах Российской Федерации: Костромская, Ярославская, Московская, Рязанская, Тульская область и Чувашская Республика. Высокие потенциальные возможности и адаптационные свойства гибрида F1 Энеж 21 наиболее значимо проявляются в Московской области (63,8 т/га), Чувашской Республике (39,4 т/га) и Рязанской области (31,2 т/га).The article presents the results of testing a new promising parthenocarpic pickling cucumber hybrid F1 Enezh 21, selected by the breedrs of the Agricultural holding «Poisk» in conditions of open ground in the North-West, Central and Volga-Vyatka regions of the Russian Federation: Kostroma, Yaroslavl, Moscow, Ryazan, Tula regions and the Chuvash Republic. The high potential and adaptation characteristic of the F1 Enezh 21 hybrid are most significantly presented in condition of the Moscow region (63.8 t / ha), the Chuvash Republic (39.4 t / ha) and the Ryazan region (31.2 t / ha).


2018 ◽  
Vol 32 (5) ◽  
pp. 586-591
Author(s):  
Samuel J. McGowen ◽  
Katherine M. Jennings ◽  
Sushila Chaudhari ◽  
David W. Monks ◽  
Jonathan R. Schultheis ◽  
...  

AbstractField studies were conducted in North Carolina to determine the critical period for Palmer amaranth control (CPPAC) in pickling cucumber. In removal treatments (REM), emerged Palmer amaranth were allowed to compete with cucumber for 14, 21, 28, or 35 d after sowing (DAS) in 2014 and 14, 21, 35, or 42 DAS in 2015, and cucumber was kept weed-free for the remainder of the season. In the establishment treatments (EST), cucumber was maintained free of Palmer amaranth by hand removal until 14, 21, 28, or 35 DAS in 2014 and until 14, 21, 35, or 42 DAS in 2015; after this, Palmer amaranth was allowed to establish and compete with the cucumber for the remainder of the season. The beginning and end of the CPPAC, based on 5% loss of marketable yield, was determined by fitting log-logistic and Gompertz equations to the relative yield data representing REM and EST, respectively. Season-long competition by Palmer amaranth reduced pickling cucumber yield by 45% to 98% and 88% to 98% during 2014 and 2015, respectively. When cucumber was planted on April 25, 2015, the CPPAC ranged from 570 to 1,002 heat units (HU), which corresponded to 32 to 49 DAS. However, when cucumber planting was delayed 2 to 4 wk (May 7 and May 21, 2014 and May 4, 2015), the CPPAC lasted from 100 to 918 HU (7 to 44 DAS). This research suggested that planting pickling cucumber as early as possible during the season may help to reduce competition by Palmer amaranth and delay the beginning of the CPPAC.


Author(s):  
J. F. Bradbury

Abstract A description is provided for Pseudomonas lachrymans. Information is included on the disease caused by the organism, its transmission, geographical distribution, and hosts. HOSTS: On Cucumis sativus and C. anguria. It may also attack C. melo var. inodorus (26: 140) and some other cucurbits. Elliott (31: 105) lists 10 hosts, all in the Cucurbitaceae. DISEASE: Angular leaf spot of cucumber. Small water-soaked spots appear on the leaves, petioles, stems, and fruits. On leaves they enlarge and become angular as they are delimited by veins They become tan to brown and the necrotic centres may fall out. On petioles, stems, and fruit spots develop white crusty bactenal exudate. A fruit rot develops if the bacteria penetrate deeply. GEOGRAPHICAL DISTRIBUTION: North and parts of Central America, most of Europe, U.S.S.R., China, Japan, W. Australia, Israel, southern Africa. (CMI Map 355, ed. 2, 1964). TRANSMISSION: The pathogen is seed-borne and infects the cotyledons dunng germination. It can overwinter on infected crop residue in the soil and has been found viable in dry leaf matenal after two and a half years (36: 677). The bacteria are carried from plant to plant within a crop by rain splash and probably by insects (Carsner, 1918; 31: 272). Workers can also spread the disease, particularly when foliage is wet with rain or dew (35: 810).


2019 ◽  
Vol 20 (3) ◽  
pp. 165-169 ◽  
Author(s):  
Katelyn E. Goldenhar ◽  
Mary K. Hausbeck

Michigan growers rely on fungicides to limit cucurbit downy mildew (CDM), incited by Pseudoperonospora cubensis; resistance of the pathogen to fungicides is a concern. We evaluated fungicides against CDM in Michigan field studies from 2015 to 2017. According to the relative area under the disease progress curve (rAUDPC), in 2015, mandipropamid, propamocarb, fluxapyroxad/pyraclostrobin, copper octanoate, and dimethomorph resulted in disease levels similar to the control. These treatments, along with cymoxanil, were similar to the control in 2016. Fungicides that were ineffective during 2015 and 2016 did not limit CDM in 2017. Famoxadone/cymoxanil and fluopicolide did not limit CDM in 2017. Each year, the following treatments were similar for disease based on rAUDPC data: oxathiapiprolin applied alone or premixed with chlorothalonil or mandipropamid, ametoctradin/dimethomorph, fluazinam, mancozeb/zoxamide, cyazofamid, and ethaboxam. An exception occurred in 2017, when ethaboxam was less effective than fluazinam, oxathiapiprolin/chlorothalonil, and oxathiapiprolin/mandipropamid. Mancozeb and chlorothalonil treatments were similar in 2015 and 2017, according to rAUDPC data. In 2017, yields were increased for oxathiapiprolin/chlorothalonil, oxathiapiprolin/mandipropamid, mancozeb, ametoctradin/dimethomorph, mancozeb/zoxamide, ethaboxam, cyazofamid, chlorothalonil, and fluazinam compared with the untreated control.


Sign in / Sign up

Export Citation Format

Share Document