Intermittent stellar wind accretion in Pop. I binary systems containing an X-ray pulsar

1985 ◽  
Vol 40 (3-4) ◽  
Author(s):  
L. Stella ◽  
N.E. White ◽  
R. Rosner
Keyword(s):  

1985 ◽  
pp. 399-407
Author(s):  
L. Stella ◽  
N. E. White ◽  
R. Rosner
Keyword(s):  


1980 ◽  
Vol 5 ◽  
pp. 541-547
Author(s):  
H. F. Henrichs

A number of massive stars of early type is found in X-ray binary systems. The catalog of Bradt et al. (1979) contains 21 sources optically identified with massive stars ranging in spectral type from 06 to B5 out of which 13 are (nearly) unevolved stars and 8 are supergiants. Single stars of this type generally show moderate to strong stellar winds. The X-rays in these binaries originate from accretion onto a compact companion (we restrict the discussion to this type of X-rays).We consider the compact star as a probe traveling through the stellar wind. This probe enables us to derive useful information about the mass outflow of massive stars.After presenting the basic data we derive an upper limit to mass loss rates of unevolved early type stars by studying X-ray pulsars. Next we consider theoretical predictions concerning the influence of X-rays on the stellar wind and compare these with the observations. Finally, using new data from IUE, we draw some conclusions about mass loss rates and velocity laws as derived from X-ray binaries.



2020 ◽  
Vol 643 ◽  
pp. A109
Author(s):  
V. Grinberg ◽  
M. A. Nowak ◽  
N. Hell

High mass X-ray binaries hold the promise of allowing us to understand the structure of the winds of their supermassive companion stars by using the emission from the compact object as a backlight to evaluate the variable absorption in the structured stellar wind. The wind along the line of sight can change on timescales as short as minutes and below. However, such short timescales are not available for the direct measurement of absorption through X-ray spectroscopy with the current generation of X-ray telescopes. In this paper, we demonstrate the usability of color–color diagrams for assessing the variable absorption in wind accreting high mass X-ray binary systems. We employ partial covering models to describe the spectral shape of high mass X-ray binaries and assess the implication of different absorbers and their variability on the shape of color–color tracks. We show that in taking into account, the ionization of the absorber, and in particular accounting for the variation of ionization with absorption depth, is crucial to describe the observed behavior well.



2020 ◽  
Vol 637 ◽  
pp. A66 ◽  
Author(s):  
E. Meyer-Hofmeister ◽  
B. F. Liu ◽  
E. Qiao ◽  
R. E. Taam

Context. Cygnus X-1 is a black hole X-ray binary system in which the black hole captures and accretes gas from the strong stellar wind emitted by its supergiant O9.7 companion star. The irradiation of the supergiant star essentially determines the flow properties of the stellar wind and the X-ray luminosity from the system. The results of three-dimensional hydrodynamical simulations of wind-fed X-ray binary systems reported in recent work reveal that the ionizing feedback of the X-ray irradiation leads to the existence of two stable states with either a soft or a hard spectrum. Aims. We discuss the observed radiation of Cygnus X-1 in the soft and hard state in the context of mass flow in the corona and disk, as predicted by the recent application of a condensation model. Methods. The rates of gas condensation from the corona to the disk for Cygnus X-1 are determined, and the spectra of the hard and soft radiation are computed. The theoretical results are compared with the MAXI observations of Cygnus X-1 from 2009 to 2018. In particular, we evaluate the hardness-intensity diagrams (HIDs) for its ten episodes of soft and hard states which show that Cygnus X-1 is distinct in its spectral changes as compared to those found in the HIDs of low-mass X-ray binaries. Results. The theoretically derived values of photon counts and hardness are in approximate agreement with the observed data in the HID. However, the scatter in the diagram is not reproduced. Improved agreement could result from variations in the viscosity associated with clumping in the stellar wind and corresponding changes of the magnetic fields in the disk. The observed dipping events in the hard state may also contribute to the scatter and to a harder spectrum than predicted by the model.



1986 ◽  
Vol 308 ◽  
pp. 669 ◽  
Author(s):  
L. Stella ◽  
N. E. White ◽  
R. Rosner
Keyword(s):  


2012 ◽  
Vol 08 ◽  
pp. 132-137
Author(s):  
VÍCTOR ZABALZA ◽  
VALENTÍ BOSCH-RAMON ◽  
JOSEP MARIA PAREDES

Gamma-ray binaries are binary systems that show non-thermal broadband emission from radio to gamma rays. If the system comprises a massive star and a young non-accreting pulsar, their winds collide producing non-thermal emission, most likely from the shocked pulsar wind. Thermal X-rays are expected from the shocked stellar wind, with a spectrum akin to the one observed in massive star binaries. The goal of this work is, through the study of the thermal X-ray emission from the shocked stellar wind in pulsar gamma-ray binaries, constrain the pulsar spin-down luminosity and the stellar wind properties. A semi-analytic model is developed to compute the thermal X-ray emission from the shocked stellar wind in pulsar gamma-ray binaries. The model results are compared with XMM-Newton observations of LS 5039, a candidate pulsar gamma-ray binary with a strong stellar wind. Exploring the range of possible values for the stellar mass-loss rate and orbital inclination, we obtain an upper limit on the pulsar spin-down luminosity of 6 × 1036 erg s-1. We conclude that, to explain the non-thermal luminosity of LS 5039 in the pulsar wind scenario, a non-thermal to spin-down luminosity ratio very close to unity may be required.



1995 ◽  
Vol 163 ◽  
pp. 271-279
Author(s):  
Lex Kaper

High-mass X-ray binaries (HMXBs) represent an important stage in the evolution of massive binary systems. The compact object (in most cases an X-ray pulsar) not only provides information on the orbital and stellar parameters, but also probes the stellar wind of the massive companion, an OB supergiant or Be star. The X-ray luminosity directly depends on the density and the velocity of the wind at the orbit of the X-ray source. Important constraints on the stellar-wind structure can be set by studying the orbital modulation of UV P-Cygni profiles. In this paper different aspects of the interactive wind-accretion process are highlighted, such as the highly variable X-ray luminosity, the influence of the X-rays on the radiative acceleration of the wind inside the ionization zone, and the large-scale structures that trail the X-ray source in its orbit.



10.14311/1310 ◽  
2011 ◽  
Vol 51 (1) ◽  
Author(s):  
F. Giovannelli ◽  
L. Sabau-Graziati

The goal of this paper is to discuss the behaviour of the X-ray transient source A0535+26 which is considered for historical reasons and for the huge amount of multifrequency data, spread over a period of 35 years, as the prototype of this class of objects. Transient sources are formed by a Be star — the primary — and a neutron star X-ray pulsar — the secondary — and constitute a sub-class of X-ray binary systems. We will emphasize the discovery of low-energy indicators of high-energy processes. They are UBVRI magnitudes and Balmer lines of the optical companion. Particular unusual activity of the primary star — usually at the periastron passage of the neutron star – indicates that an X-ray flare is drawing near. The shape and intensity of X-ray outbursts are dependent on the strength of the activity of the primary. We derive the optical orbital period of the system as 110.856 ± 0.02 days. By using the optical flare of December 5, 1981 (here after 811205-E) that triggered the subsequent X-ray outburst of December 13, 1981, we derive the ephemeris of the system as JD Popt−outb = JD0 (2, 444, 944) ± n(110.856 ± 0.02). Thus the passage of the neutron star at the periastron occurs with a periodicity of 110.856 ± 0.02 days and the different kinds of X-ray outbursts of A0535+26 — following the definitions reported in the review by Giovannelli & Sabau-Graziati (1992) — occur just after ∼ 8 days. The delay between optical and X-ray outbursts is just the transit time of the material coming out from the optical companion to reach the neutron star X-ray pulsar. The occurrence of X-ray “normal outbursts”, “anomalous outbursts” or “casual outbursts” is dependent on the activity of the Be star: “quiet state: steady stellar wind”, “excited state: stellar wind plus puffs of material”, and “expulsion of a shell”, respectively. In the latter case, the primary manifests a strong optical activity and the consequent strong X-ray outburst can occur in any orbital phase, with a preference at the periastron passage of the neutron star, because of its gravitational effects on the Be star.



Author(s):  
Douglas L. Dorset

A variety of linear chain materials exist as polydisperse systems which are difficultly purified. The stability of continuous binary solid solutions assume that the Gibbs free energy of the solution is lower than that of either crystal component, a condition which includes such factors as relative molecular sizes and shapes and perhaps the symmetry of the pure component crystal structures.Although extensive studies of n-alkane miscibility have been carried out via powder X-ray diffraction of bulk samples we have begun to examine binary systems as single crystals, taking advantage of the well-known enhanced scattering cross section of matter for electrons and also the favorable projection of a paraffin crystal structure posited by epitaxial crystallization of such samples on organic substrates such as benzoic acid.



Sign in / Sign up

Export Citation Format

Share Document