Role of membrane phospholipids and glycolipids in the Vero cell surface receptor for rubella virus

1990 ◽  
Vol 179 (2) ◽  
Author(s):  
P. Mastromarino ◽  
L. Cio� ◽  
S. Rieti ◽  
N. Orsi
Author(s):  
Alan Wanke ◽  
Milena Malisic ◽  
Stephan Wawra ◽  
Alga Zuccaro

Abstract To defend against microbial invaders but also to establish symbiotic programs, plants need to detect the presence of microbes through the perception of molecular signatures characteristic of a whole class of microbes. Among these molecular signatures, extracellular glycans represent a structurally complex and diverse group of biomolecules that has a pivotal role in the molecular dialog between plants and microbes. Secreted glycans and glycoconjugates such as symbiotic lipochitooligosaccharides or immunosuppressive cyclic β-glucans act as microbial messengers that prepare the ground for host colonization. On the other hand, microbial cell surface glycans are important indicators of microbial presence. They are conserved structures normally exposed and thus accessible for plant hydrolytic enzymes and cell surface receptor proteins. While the immunogenic potential of bacterial cell surface glycoconjugates such as lipopolysaccharides and peptidoglycan has been intensively studied in the past years, perception of cell surface glycans from filamentous microbes such as fungi or oomycetes is still largely unexplored. To date, only few studies have focused on the role of fungal-derived cell surface glycans other than chitin, highlighting a knowledge gap that needs to be addressed. The objective of this review is to give an overview on the biological functions and perception of microbial extracellular glycans, primarily focusing on their recognition and their contribution to plant–microbe interactions.


2020 ◽  
Author(s):  
Anh Hoang Le ◽  
Tamas Yelland ◽  
Nikki Paul ◽  
Loic Fort ◽  
Savvas Nikolaou ◽  
...  

The Scar/WAVE complex is the major driver of actin nucleation at the plasma membrane, resulting in lamellipodia and membrane ruffles. While lamellipodia aid migration, membrane ruffles can generate macropinosomes - cup-like structures - important for nutrient uptake and regulation of cell surface receptor levels. How macropinosomes are formed and the role of the actin machinery in their formation and resolution is still not well understood. Mammalian CYRI-B is a recently described negative regulator of the Scar/WAVE complex by RAC1 sequestration, but its other paralogue, CYRI-A has not been characterised. Here we implicate CYRI-A as a key regulator of macropinocytosis maturation and integrin internalisation from the cell surface. We find that CYRI-A is recruited to nascent macropinosomes in a transient but distinct burst, downstream of PIP3-mediated RAC1 activation to regulate actin polymerisation. CYRI-A precedes RAB5A recruitment to engulfed macropinocytic cups and departs as RAB5A is recruited, consistent with a role for CYRI-A as a local suppressor of actin dynamics, enabling the resolution of the macropinocytic cup. The suppression of integrin a5b1 uptake caused by the co-depletion of CYRI-A and B in Ewing sarcoma cells, leads to an enhancement of surface integrin levels and enhanced invasion and anchorage-independent growth in 3D. Thus CYRI-A is a dynamic regulator of integrin uptake via macropinocytosis, functioning together with CYRI-B to regulate integrin homeostasis on the cell surface.


Endocrinology ◽  
2010 ◽  
Vol 151 (2) ◽  
pp. 660-670 ◽  
Author(s):  
Simon Roy ◽  
Benoît Perron ◽  
Nicole Gallo-Payet

Asparagine-linked glycosylation (N-glycosylation) of G protein-coupled receptors may be necessary for functions ranging from agonist binding, folding, maturation, stability, and internalization. Human melanocortin 2 receptor (MC2R) possesses putative N-glycosylation sites in its N-terminal extracellular domain; however, to date, the role of MC2R N-glycosylation has yet to be investigated. The objective of the present study is to examine whether N-glycosylation is essential or not for cell surface expression and cAMP production in native and MC2R accessory protein (MRAPα, -β, or -dCT)-expressing cells using 293/FRT transfected with Myc-MC2R. Western blot analyses performed with or without endoglycosidase H, peptide:N-glycosidase F or tunicamycin treatments and site-directed mutagenesis revealed that MC2R was glycosylated in the N-terminal domain at its two putative N-glycosylation sites (Asn12-Asn13-Thr14 and Asn17-Asn18-Ser19). In the absence of human MRAP coexpression, N-glycosylation of at least one of the two sites was necessary for MC2R cell surface expression. However, when MRAP was present, cell surface expression of MC2R mutants was either rescued entirely with the N17-18Q (QQNN) and N12-13Q (NNQQ) mutants or partially with the unglycosylated N12-13, 17-18Q (QQQQ) mutant. Functional and expression analyses revealed a discrepancy between wild-type (WT) and QQQQ cell surface receptor levels and maximal cAMP production with a 4-fold increase in EC50 values. Taken together, these results indicate that the absence of MC2R N-glycosylation abrogates to a large extent MC2R cell surface expression in the absence of MRAPs, whereas when MC2R is N-glycosylated, it can be expressed at the plasma membrane without MRAP assistance.


1984 ◽  
Vol 4 (1-6) ◽  
pp. 489-504 ◽  
Author(s):  
C. J. Kirk ◽  
E. A. Bone ◽  
S. Palmer ◽  
R. H. Michell

2020 ◽  
Author(s):  
Zankruti Dave ◽  
Olga Vondálová Blanářová ◽  
Štěpán Čada ◽  
Pavlína Janovská ◽  
Nikodém Zezula ◽  
...  

AbstractChronic lymphocytic leukemia (CLL) and mantle cell lymphoma (MCL) are malignancies characterized by the dependence on B-cell receptor (BCR) signaling and by the high expression of the cell surface receptor ROR1. Both, BCR and ROR1 are therapeutic targets in these diseases and the understanding of their mutual cross talk is thus of direct therapeutic relevance. In this study we analyzed the role of Lyn, a kinase from the Src family, as a mediator of the BCR-ROR1 crosstalk. We confirm the functional interaction between Lyn and ROR1 and demonstrate that Lyn kinase efficiently phosphorylates ROR1 in its kinase domain and aids the recruitment of an E3 ligase c-CBL. The absence of Lyn in Lyn KO Maver-1 cells produced by CRISPR-Cas9 resulted in the increased ROR1 cell surface levels and deregulated migratory properties. Similar correlations between ROR1 surface dynamics, levels of active Lyn and chemotactic properties were confirmed in primary CLL samples. Our data establish Lyn-mediated phosphorylation of ROR1 as a point of crosstalk between BCR and ROR1 signaling pathways.


2015 ◽  
Vol 135 (2) ◽  
pp. AB164
Author(s):  
Moyar Q. Ge ◽  
Blerina Kokalari ◽  
Anisha Kolupoti ◽  
Kerry S. Campbell ◽  
Angela Haczku

2017 ◽  
Vol 12 (8) ◽  
pp. S1542 ◽  
Author(s):  
X. Zhou ◽  
B.L. Updegraff ◽  
Y. Guo ◽  
M. Peyton ◽  
L. Girard ◽  
...  

2021 ◽  
Vol 135 (1) ◽  
pp. 1-17
Author(s):  
Ravindra K. Sharma ◽  
Jing Li ◽  
Suraj Krishnan ◽  
Elaine M. Richards ◽  
Mohan K. Raizada ◽  
...  

Abstract The rapid spread of the novel coronavirus, severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), has brought into focus the key role of angiotensin-converting enzyme 2 (ACE2), which serves as a cell surface receptor required for the virus to enter cells. SARS-CoV-2 can decrease cell surface ACE2 directly by internalization of ACE2 bound to the virus and indirectly by increased ADAM17 (a disintegrin and metalloproteinase 17)-mediated shedding of ACE2. ACE2 is widely expressed in the heart, lungs, vasculature, kidney and the gastrointestinal (GI) tract, where it counteracts the deleterious effects of angiotensin II (AngII) by catalyzing the conversion of AngII into the vasodilator peptide angiotensin-(1-7) (Ang-(1-7)). The down-regulation of ACE2 by SARS-CoV-2 can be detrimental to the cardiovascular system and kidneys. Further, decreased ACE2 can cause gut dysbiosis, inflammation and potentially worsen the systemic inflammatory response and coagulopathy associated with SARS-CoV-2. This review aims to elucidate the crucial role of ACE2 both as a regulator of the renin–angiotensin system and a receptor for SARS-CoV-2 as well as the implications for Coronavirus disease 19 and its associated cardiovascular and renal complications.


Sign in / Sign up

Export Citation Format

Share Document