Low-frequency variability and CO2 transient climate change

1993 ◽  
Vol 8 (3) ◽  
pp. 117-133 ◽  
Author(s):  
Gerald A Meehl ◽  
Warren M Washington ◽  
Thomas R Karl
1994 ◽  
Vol 10 (6-7) ◽  
pp. 277-303
Author(s):  
Gerald A Meehl ◽  
Matthew Wheeler ◽  
Warren M Washington

1994 ◽  
Vol 10 (6-7) ◽  
pp. 277-303 ◽  
Author(s):  
Gerald A Meehl ◽  
Matthew Wheeler ◽  
Warren M Washington

2019 ◽  
Vol 9 (1) ◽  
Author(s):  
Giulia Bonino ◽  
Emanuele Di Lorenzo ◽  
Simona Masina ◽  
Doroteaciro Iovino

AbstractClimate variability and climate change in Eastern Boundary Upwelling Systems (EBUS) affect global marine ecosystems services. We use passive tracers in a global ocean model hindcast at eddy-permitting resolution to diagnose EBUS low-frequency variability over 1958–2015 period. The results highlight the uniqueness of each EBUS in terms of drivers and climate variability. The wind forcing and the thermocline depth, which are potentially competitive or complementary upwelling drivers under climate change, control EBUS low-frequency variability with different contributions. Moreover, Atlantic and Pacific upwelling systems are independent. In the Pacific, the only coherent variability between California and Humboldt Systems is associated with El Niño Southern Oscillation. The remaining low-frequency variance is partially explained by the North and South Pacific expressions of the Meridional Modes. In the Atlantic, coherent variability between Canary and Benguela Systems is associated with upwelling trends, which are not dynamically linked and represent different processes. In the Canary, a negative upwelling trend is connected to the Atlantic Multi-decadal Oscillation, while in the Benguela, a positive upwelling trend is forced by a global sea level pressure trend, which is consistent with the climate response to anthropogenic forcing. The residual variability is forced by localized offshore high sea level pressure variability.


Water ◽  
2021 ◽  
Vol 13 (11) ◽  
pp. 1494
Author(s):  
Bernardo Teufel ◽  
Laxmi Sushama

Fluvial flooding in Canada is often snowmelt-driven, thus occurs mostly in spring, and has caused billions of dollars in damage in the past decade alone. In a warmer climate, increasing rainfall and changing snowmelt rates could lead to significant shifts in flood-generating mechanisms. Here, projected changes to flood-generating mechanisms in terms of the relative contribution of snowmelt and rainfall are assessed across Canada, based on an ensemble of transient climate change simulations performed using a state-of-the-art regional climate model. Changes to flood-generating mechanisms are assessed for both a late 21st century, high warming (i.e., Representative Concentration Pathway 8.5) scenario, and in a 2 °C global warming context. Under 2 °C of global warming, the relative contribution of snowmelt and rainfall to streamflow peaks is projected to remain close to that of the current climate, despite slightly increased rainfall contribution. In contrast, a high warming scenario leads to widespread increases in rainfall contribution and the emergence of hotspots of change in currently snowmelt-dominated regions across Canada. In addition, several regions in southern Canada would be projected to become rainfall dominated. These contrasting projections highlight the importance of climate change mitigation, as remaining below the 2 °C global warming threshold can avoid large changes over most regions, implying a low likelihood that expensive flood adaptation measures would be necessary.


Water ◽  
2020 ◽  
Vol 12 (7) ◽  
pp. 2058 ◽  
Author(s):  
Larissa Rolim ◽  
Francisco de Souza Filho

Improved water resource management relies on accurate analyses of the past dynamics of hydrological variables. The presence of low-frequency structures in hydrologic time series is an important feature. It can modify the probability of extreme events occurring in different time scales, which makes the risk associated with extreme events dynamic, changing from one decade to another. This article proposes a methodology capable of dynamically detecting and predicting low-frequency streamflow (16–32 years), which presented significance in the wavelet power spectrum. The Standardized Runoff Index (SRI), the Pruned Exact Linear Time (PELT) algorithm, the breaks for additive seasonal and trend (BFAST) method, and the hidden Markov model (HMM) were used to identify the shifts in low frequency. The HMM was also used to forecast the low frequency. As part of the results, the regime shifts detected by the BFAST approach are not entirely consistent with results from the other methods. A common shift occurs in the mid-1980s and can be attributed to the construction of the reservoir. Climate variability modulates the streamflow low-frequency variability, and anthropogenic activities and climate change can modify this modulation. The identification of shifts reveals the impact of low frequency in the streamflow time series, showing that the low-frequency variability conditions the flows of a given year.


2008 ◽  
Vol 21 (9) ◽  
pp. 1948-1962 ◽  
Author(s):  
R. Garcia-Herrera ◽  
D. Barriopedro ◽  
E. Hernández ◽  
H. F. Diaz ◽  
R. R. Garcia ◽  
...  

Abstract The authors present a chronology of El Niño (EN) events based on documentary records from northern Peru. The chronology, which covers the period 1550–1900, is constructed mainly from primary sources from the city of Trujillo (Peru), the Archivo General de Indias in Seville (Spain), and the Archivo General de la Nación in Lima (Peru), supplemented by a reassessment of documentary evidence included in previously published literature. The archive in Trujillo has never been systematically evaluated for information related to the occurrence of El Niño–Southern Oscillation (ENSO). Abundant rainfall and river discharge correlate well with EN events in the area around Trujillo, which is very dry during most other years. Thus, rain and flooding descriptors, together with reports of failure of the local fishery, are the main indicators of EN occurrence that the authors have searched for in the documents. A total of 59 EN years are identified in this work. This chronology is compared with the two main previous documentary EN chronologies and with ENSO indicators derived from proxy data other than documentary sources. Overall, the seventeenth century appears to be the least active EN period, while the 1620s, 1720s, 1810s, and 1870s are the most active decades. The results herein reveal long-term fluctuations in warm ENSO activity that compare reasonably well with low-frequency variability deduced from other proxy data.


Sign in / Sign up

Export Citation Format

Share Document