Expected early genetic gain from selection for milk yield in dairy cattle

1987 ◽  
Vol 74 (6) ◽  
pp. 753-757 ◽  
Author(s):  
M. R. Dentine ◽  
B. T. McDaniel
Animals ◽  
2020 ◽  
Vol 10 (12) ◽  
pp. 2271
Author(s):  
Francesco Tiezzi ◽  
Antonio Marco Maisano ◽  
Stefania Chessa ◽  
Mario Luini ◽  
Stefano Biffani

In spite of the impressive advancements observed on both management and genetic factors, udder health still represents one of most demanding objectives to be attained in the dairy cattle industry. Udder morphology and especially teat condition might represent the first physical barrier to pathogens’ access. The objectives of this study were to investigate the genetic component of teat condition and to elucidate its relationship with both milk yield and somatic cell scores in dairy cattle. Moreover, the effect of selection for both milk yield and somatic cell scores on teat condition was also investigated. A multivariate analysis was conducted on 10,776 teat score records and 30,160 production records from 2469 Italian Holstein cows. Three teat scoring traits were defined and included in the analysis. Heritability estimates for the teat score traits were moderate to low, ranging from 0.084 to 0.238. When teat score was based on a four-classes ordinal scoring, its genetic correlation with milk yields and somatic cell score were 0.862 and 0.439, respectively. The scale used to classify teat-end score has an impact on the magnitude of the estimates. Genetic correlations suggest that selection for milk yield could deteriorate teat health, unless more emphasis is given to somatic cell scores. Considering that both at national and international level, the current selection objectives are giving more emphasis to health traits, a further genetic deterioration in teat condition is not expected.


1994 ◽  
Vol 77 (10) ◽  
pp. 3137-3152 ◽  
Author(s):  
W.P. Jones ◽  
L.B. Hansen ◽  
H. Chester-Jones

1964 ◽  
Vol 44 (3) ◽  
pp. 290-296 ◽  
Author(s):  
R. J. Curtis ◽  
C. G. Hickman

Production data from five Holstein, six Ayrshire, and three Jersey herds were analysed to give the expected effects of milk and total milk solids selection on milk quality as measured by per cent butterfat, solids-not-fat, and protein. Progeny tests were conducted at 11 locations under total digestible nutrient controlled, year-round stable feeding conditions.With varying breeding values for total milk solids yield, there was no definite trend between quality and quantity for Holsteins and Ayrshires, but in Jerseys quality showed a definite downward trend with increasing quantity.For milk yield breeding values the same applied except that protein percentage in Holsteins also showed a downward trend with increasing quantity.


1950 ◽  
Vol 50 (1) ◽  
pp. 1-8 ◽  
Author(s):  
J. M. Rendel ◽  
Alan Robertson
Keyword(s):  

2018 ◽  
Vol 85 (2) ◽  
pp. 125-132
Author(s):  
Leonardo de Oliveira Seno ◽  
Diego Gomes Freire Guidolin ◽  
Rusbel Raul Aspilcueta-Borquis ◽  
Guilherme Batista do Nascimento ◽  
Thiago Bruno Ribeiro da Silva ◽  
...  

Genomic selection is arguably the most promising tool for improving genetic gain in domestic animals to emerge in the last few decades, but is an expensive process. The aim of this study was to evaluate the economic impact related to the implementation of genomic selection in a simulated dairy cattle population. The software QMSim was used to simulate genomic and phenotypic data. The simulated genome contained 30 chromosomes with 100 cm each, 1666 SNPs markers equally spread and 266 QTLs randomly designated for each chromosome. The numbers of markers and QTLs were designated according to information available from Animal QTL (http://www.animalgenome.org/QTLdb) and Bovine QTL (http://bovineqtl.tamu.edu/). The allelic frequency changes were assigned in a gamma distribution with alpha parameters equal to 0·4. Recurrent mutation rates of 1·0e−4 were assumed to apply to markers and QTLs. A historic population of 1000 individuals was generated and the total number of animals was reduced gradually along 850 generations until we obtained a number of 200 animals in the last generation, characterizing a bottleneck effect. Progenies were created along generations from random mating of the male and female gametes, assuming the same proportion of both genders. Than the population was extended for another 150 generations until we obtained 17 000 animals, with only 320 male individuals in the last generation. After this period a 25 year of selection was simulated taking into account a trait limited by sex with heritability of 0·30 (i.e. milk yield), one progeny/cow/year and variance equal to 1·0. Annually, 320 bulls were mated with 16 000 dams, assuming a replacement rate of 60 and 40% for males and females, respectively. Selection and discard criteria were based in four strategies to obtain the EBVs assuming as breeding objective to maximize milk yield. The progeny replaced the discarded animals creating an overlapping generation structure. The selection strategies were: RS is selection based on random values; PS is selection based on phenotypic values; Blup is selection based on EBVs estimated by BLUP; and GEBV is selection based on genomic estimated breeding values in one step, using high (GBlup) and low (GBlupi) density panels. Results indicated that the genetic evaluation using the aid of genomic information could provide better genetic gain rates in dairy cattle breeding programs as well as reduce the average inbreeding coefficient in the population. The economic viability indicators showed that only Blup and GBlup/GBlupi strategies, the ones that used milk control and genetic evaluation were economic viable, considering a discount rate of 6·32% per year.


2010 ◽  
Vol 25 (1) ◽  
pp. 22-30 ◽  
Author(s):  
Tomasz Sołtysiak ◽  
Zenon Nogalski

2016 ◽  
Vol 52 ◽  
pp. 6-12 ◽  
Author(s):  
M. V. Gladiy ◽  
G. S. Kovalenko ◽  
S. V. Priyma ◽  
G. A. Holyosa ◽  
A. V. Tuchyk ◽  
...  

The main goal of dairy breeds selection should be improving breeding and productive qualities of animals under modern conditions. The majority of farms, using native breeds to produce milk, has created optimal conditions for keeping and feeding, selection and matching, growing of replacements etc. Further improvement of created native dairy breeds for economically useful traits occurs at total use of purebred Holstein bulls (semen) of foreign selection. In order to realistically assess milk productivity (milk yield, fat content in milk and fat yield) of Ukrainian Black-and-White and Red-and-White Dairy cows should be conducted a comparative analysis of Holstein cows under the same conditions of feeding and keeping. It was established that Ukrainian Red-and-White Dairy cows were characterized by the highest milk yields for 305 days of all lactations, taken into account, the among three investigated breeds. Their milk yield during the first lactation was 5933 kg of milk, during the second – 6393 kg, the third – 6391 kg and during higher lactation – 6650 kg. Ukrainian Black-and-White Dairy cows were second by milk yield (except for the second lactation), during the first lactation – 5932 kg of milk, the third – 6462 kg and higher – 6541 kg, and Holstein cows were third, during the first lactation – 5794 kg of milk, the second – 6381 kg, the third – 6335 kg and higher – 6469 kg. The fat content was almost the same and varied within 3.49-3.58% in milk of Ukrainian Red-and-White Dairy cattle, 3.50-3.60% in milk of Ukrainian Black-and-White Dairy cattle and 3.50-3.56% in Holsteins’ milk. The difference between the breeds was within 0.01-0.04%. All the investigated breeds had predominance in fat yield for three lactations over standards of these breeds: Ukrainian Red-and-White Dairy cows from 75.1 to 93.4 kg, Ukrainian Black-and-White Dairy cows – 75.1-89.0 kg respectively and Holstein cows – 41.9-60.2 kg. It was found different level of positive correlation between milk yield and fat yield in all the cases and high correlation (r = 0.604-0.921, P < 0.001) in five cases (41.7%) Negative correlation coefficients indicate that selection of animals to higher milk yield in the herd will decrease the second trait – fat content in milk. Positive and highly significant correlation between milk yield and fat yield indicates that selection of cows in the herd to higher milk yields will increase fat yield. It was revealed that bulls were among the factors impacted the milk productivity (milk yield, fat content, fat yield) of three investigated breeds. So, the force (η²x) of father’s impact on milk yield was15.4-47.9%, fat content – 22.0-43.4% and fat yield – 14.9-47.7% taking into account a lactation and a breed. The force of lines impact (η²x) was second; it was on milk yield 6.1-24.5%, fat content – 4.1-17.1 and fat yield – 5.8-23.5%. The force of breeds impact (η²x) was last; it was on milk yield 0.3-2.9%, fat content – 0.2-0.3% and fat yield – 0.6-2.7%. So, the comparative studies of milk productivity of Ukrainian Red-and-White and Black-and-White Dairy cattle with Holsteins indicate that under similar conditions of feeding and keeping, these native breeds can compete with Holstein cattle. The milk yield for 305 days of higher lactation was 6650 kg of milk in Ukrainian Red-and-White Dairy cows, 6541 kg in Ukrainian Black-and-White Dairy cows and 6469 kg in Holsteins. It was found the inverse correlation r = -0.025-0.316 between milk yield and fat content in milk in most cases. Selection and matching of animals in the herd should be carried out simultaneously on these traits. It was found positive repeatability of milk yields between the first and second, the third and higher lactations (rs = 0.036-0.741), indicating the reliability of forecasting increase in milk productivity during the next lactations in all herd. Bulls have the greatest impact (η²x) on milk productivity among the factors taken into account: milk yield – 15.4-47.9%, fat content in milk – 22.0-43.4% and fat yield – 14.9-47.7%.


2006 ◽  
Vol 2006 ◽  
pp. 86-86
Author(s):  
G Wellwood ◽  
J K Margerison

Mastitis is a complex disease causing inflammation of the udder, which has been estimated to cost the dairy farmer between £40-£117/cow per year (Stott et al., 2002). Economic loss occurs as a result of discarded milk, reduced milk yield and milk quality, increased vet costs and an increase in replacement costs. The objective of this study was to examine the effect of breed on the incidence of mastitis and somatic cell counts and milk production capabilities of Holstein Friesian, Brown Swiss and Brown Swiss crossbred cows.


Ruminants ◽  
2021 ◽  
Vol 1 (1) ◽  
pp. 1-22
Author(s):  
Frank van Eerdenburg ◽  
Lars Ruud

Lying is an important behavior of dairy cattle. Cows should spend more than 50% of a day lying as it has a high impact on their milk yield and animal welfare. The design, size, and flooring properties of the free stalls influence the time cows spend lying, the way they lie down, and their rising movements. The purpose of this review is to provide an overview of the currently available information with the aim to assist farmers and advisors to come to an optimal design of the free stalls. The design of the free stalls should enable the cows to move and lie in positions as natural as possible. Cows should rest, with all parts of the body, on a clean, dry and soft bed, be able to stretch their front legs forward, lie on their sides with unobstructed space for their neck and head, and rest with their heads against their flanks without hindrance from a partition. When they stand, they should not be hindered by neck rails, partitions, or supports. A comfortable place for cows to lie down helps cows to stay healthy, improve welfare, and increase milk yield. Hence, the probability of a longer productive life for the cows increases and the number of replacements per year decreases.


Sign in / Sign up

Export Citation Format

Share Document