Metabolic fate of initiation factors after inhibition of protein synthesis in Escherichia coli

1973 ◽  
Vol 125 (4) ◽  
pp. 301-318 ◽  
Author(s):  
Lucienne Legault-Demare ◽  
Claude Jeantet ◽  
François Gros
2006 ◽  
Vol 50 (1) ◽  
pp. 362-364 ◽  
Author(s):  
Xilin Zhao ◽  
Muhammad Malik ◽  
Nymph Chan ◽  
Alex Drlica-Wagner ◽  
Jian-Ying Wang ◽  
...  

ABSTRACT Inhibition of DNA replication in an Escherichia coli dnaB-22 mutant failed to block quinolone-mediated lethality. Inhibition of protein synthesis by chloramphenicol inhibited nalidixic acid lethality and, to a lesser extent, ciprofloxacin lethality in both dnaB-22 and wild-type cells. Thus, major features of quinolone-mediated lethality do not depend on ongoing replication.


Amino Acids ◽  
2019 ◽  
Vol 51 (10-12) ◽  
pp. 1577-1592 ◽  
Author(s):  
Galina V. Smirnova ◽  
Aleksey V. Tyulenev ◽  
Kseniya V. Bezmaternykh ◽  
Nadezda G. Muzyka ◽  
Vadim Y. Ushakov ◽  
...  

1970 ◽  
Vol 118 (4) ◽  
pp. 659-666 ◽  
Author(s):  
G. Turnock

A mutant of Escherichia coli with increased sensitivity to streptomycin has been studied. This strain differed from a normal strs strain in that streptomycin produced inhibition of protein synthesis and loss of viability with almost no lag period. Chloramphenicol protected a normal strs strain but not the mutant against the bactericidal action of streptomycin. The results obtained support the idea that access of streptomycin to its site of action in a normal cell is restricted, and that this restriction, which is much less effective in the mutant, probably involves a permeability barrier. Comparison of the inhibition of protein synthesis by streptomycin with concomitant changes in the distribution of polyribosomes in both strains suggested that the antibiotic can directly inhibit the translation of mRNA.


2004 ◽  
Vol 32 (4) ◽  
pp. 606-610 ◽  
Author(s):  
M. Bushell ◽  
M. Stoneley ◽  
P. Sarnow ◽  
A.E. Willis

The induction of apoptosis leads to a substantial inhibition of protein synthesis. During this process changes to the translation-initiation factors, the ribosome and the cellular level of mRNA have been documented. However, it is by no means clear which of these events are necessary to achieve translational shutdown. In this article, we discuss modifications to the translational apparatus that occur during apoptosis and examine the potential contributions that they make to the inhibition of protein synthesis. Moreover, we present evidence that suggests that a global increase in the rate of mRNA degradation occurs before the caspase-dependent cleavage of initiation factors. Increased mRNA decay is temporally correlated with the shutdown of translation and therefore plays a major role in the inhibition of protein synthesis in apoptotic cells.


2012 ◽  
Vol 303 (12) ◽  
pp. C1269-C1277 ◽  
Author(s):  
Elaine Choung-Hee Lee ◽  
Kevin Strange

Increased gpdh-1 transcription is required for accumulation of the organic osmolyte glycerol and survival of Caenorhabditis elegans during hypertonic stress. Our previous work has shown that regulators of gpdh-1 ( rgpd) gene knockdown constitutively activates gpdh-1 expression. Fifty-five rgpd genes play essential roles in translation suggesting that inhibition of protein synthesis is an important signal for regulating osmoprotective gene transcription. We demonstrate here that translation is reduced dramatically by hypertonic stress or knockdown of rgpd genes encoding aminoacyl-tRNA synthetases and eukaryotic translation initiation factors (eIFs). Toxin-induced inhibition of translation also activates gpdh-1 expression. Hypertonicity-induced translation inhibition is mediated by general control nonderepressible (GCN)-2 kinase signaling and eIF-2α phosphoryation. Loss of gcn-1 or gcn-2 function prevents eIF-2α phosphorylation, completely blocks reductions in translation, and inhibits gpdh-1 transcription. gpdh-1 expression is regulated by the highly conserved with-no-lysine kinase (WNK) and Ste20 kinases WNK-1 and GCK-3, which function in the GCN-2 signaling pathway downstream from eIF-2α phosphorylation. Our previous work has shown that hypertonic stress causes rapid and dramatic protein damage in C. elegans and that inhibition of translation reduces this damage. The current studies demonstrate that reduced translation also serves as an essential signal for activation of WNK-1/GCK-3 kinase signaling and subsequent transcription of gpdh-1 and possibly other osmoprotective genes.


Sign in / Sign up

Export Citation Format

Share Document