Ultrastructural study of Sertoli cells in rat seminiferous tubules during intrauterine life and the postnatal period

1980 ◽  
Vol 160 (1) ◽  
pp. 11-27 ◽  
Author(s):  
Ren�e Hatier ◽  
Georges Grignon
2016 ◽  
Vol 28 (2) ◽  
pp. 164
Author(s):  
F. Oliveira ◽  
A. Santos ◽  
A. A. Neto

Sexual differentiation in mammals is an event that presents many variations between species. Because it is related to hormonal function, any imbalance in the androgens and estrogens production can lead to malformations. Because sexual differentiation occurs in different ways among various animals, the recognition of their peculiarities becomes important in order to correct reproductive handling in different species. Considering that the guinea pig is commonly used as an experimental model in the reproductive area, the goal of this work was to perform a morphological description of gonad differentiation of the male guinea pig during embryonic development. In total, 11 conceptuses with ages 25 (n = 3), 30 (n = 2), 40 (n = 2), 50 (n = 2), and 65 (n = 2) days were used for light microscopy processing. The embryos at 25 days were processed completely. For the others, the gonads were dissected. The samples were dehydrated in alcohol, embedded in paraffin, and 5-µm sections were stained with hematoxylin-eosin. In the guinea pig gonad at 25 days gestation, there was a presence of gonadal cords, formed by condensation of somatic cells, which is characteristic of an undifferentiated gonad. In addition, we observed the presence of mesonephric and paramesonephric ducts in different embryos, indicating that other genital system organs were not formed. For the 30 days of development of guinea pigs, we observed that gonadal cords were differentiated in testicular cords by invasion of mesenchymal and endothelial cells, and also composed of Sertoli cells and primordial germ cells. These cords were among a large amount of testicular mesenchyme at the 40-day group. With 50- and 65-day development samples, the gonad was completely differentiated into testicle, with the presence of spermatogonia and Sertoli cells in the seminiferous tubules, and a large amount of interstitial Leydig cells around the tubules. We conclude that gonadal differentiation in guinea pig males occurs around the middle of pregnancy, between 25 and 30 days and that, before the end of the pregnancy, at 50 days, the testicle presents morphology similar to that found in the postnatal period.


Reproduction ◽  
2006 ◽  
Vol 132 (1) ◽  
pp. 79-93 ◽  
Author(s):  
Hiroetsu Suzuki ◽  
Mio Yagi ◽  
Katsushi Suzuki

Male rats with hypogonadism (hgn/hgn) experience sterility from testicular dysplasia, which is controlled by a single recessive gene, hgn. The postnatal growth of the seminiferous tubules was severely affected. In this study, we localized thehgnlocus to a 320 kb region on rat chromosome 10 and detected the insertion of a 25 bp duplication into the sixth exon of the sperm-associated antigen 5 (Spag5/astrin/MAP126) gene, which codes for a microtubule-associated protein. This mutation results in a truncatedSpag5protein lacking the primary spindle-targeting domain at the C terminus. Immunological staining with antibodies to markers for Sertoli and germ cells during the early postnatal period indicated that the abnormal mitosis with dispersed chromosomes inhgn/hgntestes occurs in proliferating Sertoli cells. Therefore, apoptotic Sertoli cell death would result from the disorganization of the spindle apparatus caused by defectiveSpag5. These findings suggested that theSpag5is essential for testis development in rats and that thehgn/hgnrat is a unique animal model for studying the function ofSpag5.


1990 ◽  
Vol 66 (6) ◽  
pp. 393-403 ◽  
Author(s):  
Masamichi KUROHMARU ◽  
Takao NISHIDA ◽  
Yoshihiro HAYASHI ◽  
Shigeto YAMASHIRO ◽  
Tetsuya MATSUZAKI

Development ◽  
1991 ◽  
Vol 113 (1) ◽  
pp. 311-325 ◽  
Author(s):  
C.E. Patek ◽  
J.B. Kerr ◽  
R.G. Gosden ◽  
K.W. Jones ◽  
K. Hardy ◽  
...  

Adult intraspecific mouse chimaeras, derived by introducing male embryonal stem cells into unsexed host blastocysts, were examined to determine whether gonadal sex was correlated with the sex chromosome composition of particular cell lineages. The fertility of XX in equilibrium XY and XY in equilibrium XY male chimaeras was also compared. The distribution of XX and XY cells in 34 XX in equilibrium XY ovaries, testes and ovotestes was determined by in situ hybridisation using a Y-chromosome-specific probe. Both XX and XY cells were found in all gonadal somatic tissues but Sertoli cells were predominantly XY and granulosa cells predominantly XX. The sex chromosome composition of the tunica albuginea and testicular surface epithelium could not, in general, be fully resolved, owing to diminished hybridisation efficiency in these tissues, but the ovarian surface epithelium (which like the testicular surface epithelium derives from the coelomic epithelium) was predominantly XX. These findings show that the claim that Sertoli cells were exclusively XY, on which some previous models of gonadal sex determination were based, was incorrect, and indicate instead that in the mechanism of Sertoli cell determination there is a step in which XX cells can be recruited. However, it remains to be established whether the sex chromosome constitution of the coelomic epithelium lineage plays a causal role in gonadal sex determination. Male chimaeras with XX in equilibrium XY testes were either sterile or less fertile than chimaeras with testes composed entirely of XY cells. This impaired fertility was associated with the loss of XY germ cells in atrophic seminiferous tubules. Since this progressive lesion was correlated with a high proportion of XX Leydig cells, we suggest that XX Leydig cells are functionally defective, and unable to support spermatogenesis.


Reproduction ◽  
2019 ◽  
Author(s):  
Parag Parekh ◽  
Thomas Xavier Garcia ◽  
Marie-claude Hofmann

Sertoli cells regulate male germ cell proliferation and differentiation and are a critical component of the spermatogonial stem cell (SSC) niche, where homeostasis is maintained by the interplay of several signaling pathways and growth factors. These factors are secreted by Sertoli cells located within the seminiferous epithelium, and by interstitial cells residing between the seminiferous tubules. Sertoli cells and peritubular myoid cells produce glial cell line-derived neurotrophic factor (GDNF), which binds to the RET/GFRA1 receptor complex at the surface of undifferentiated spermatogonia. GDNF is known for its ability to drive SSC self-renewal and proliferation of their direct cell progeny. Even though the effects of GDNF are well studied, our understanding of the regulation its expression is still limited. The purpose of this review is to discuss how GDNF expression in Sertoli cells is modulated within the niche, and how these mechanisms impact germ cell homeostasis.


Endocrinology ◽  
2005 ◽  
Vol 146 (3) ◽  
pp. 1035-1042 ◽  
Author(s):  
Susan Y. Park ◽  
J. Larry Jameson

The embryonic gonad is undifferentiated in males and females until a critical stage when the sex chromosomes dictate its development as a testis or ovary. This binary developmental process provides a unique opportunity to delineate the molecular pathways that lead to distinctly different tissues. The testis comprises three main cell types: Sertoli cells, Leydig cells, and germ cells. The Sertoli cells and germ cells reside in seminiferous tubules where spermatogenesis occurs. The Leydig cells populate the interstitial compartment and produce testosterone. The ovary also comprises three main cell types: granulosa cells, theca cells, and oocytes. The oocytes are surrounded by granulosa and theca cells in follicles that grow and differentiate during characteristic reproductive cycles. In this review, we summarize the molecular pathways that regulate the distinct differentiation of these cell types in the developing testis and ovary. In particular, we focus on the transcription factors that initiate these cascades. Although most of the early insights into the sex determination pathway were based on human mutations, targeted mutagenesis in mouse models has revealed key roles for genes not anticipated to regulate gonadal development. Defining these molecular pathways provides the foundation for understanding this critical developmental event and provides new insight into the causes of gonadal dysgenesis.


Development ◽  
1994 ◽  
Vol 120 (7) ◽  
pp. 1759-1766 ◽  
Author(s):  
K. Yomogida ◽  
H. Ohtani ◽  
H. Harigae ◽  
E. Ito ◽  
Y. Nishimune ◽  
...  

GATA-1 is an essential factor for the transcriptional activation of erythroid-specific genes, and is also abundantly expressed in a discrete subset of cells bordering the seminiferous epithelium in tubules of the murine testis. In examining normal and germ-line defective mutant mice, we show here that GATA-1 is expressed only in the Sertoli cell lineage in mouse testis. GATA-1 expression in Sertoli cells is induced concomitantly with the first wave of spermatogenesis, and GATA-1-positive cells are uniformly distributed among all tubules during prepubertal testis development. However, the number of GATA-1-positive cells declines thereafter and were found only in the peripheral zone of seminiferous tubules in stages VII, VIII and IX of spermatogenesis in the adult mouse testis. In contrast, virtually every Sertoli cell in mutant W/Wv, jsd/jsd or cryptorchid mice (all of which lack significant numbers of germ cells) expresses GATA-1, thus showing that the expression of this transcription factor is negatively controlled by the maturing germ cells. These observations suggest that transcription factor GATA-1 is a developmental stage- and spermatogenic cycle-specific regulator of gene expression in Sertoli cells.


1984 ◽  
Vol 102 (2) ◽  
pp. 269-274 ◽  
Author(s):  
G. S. Bilaspuri ◽  
S. S. Guraya

SummaryIsocitrate dehydrogenase (ICDH), succinate dehydrogenase (SDH), malate dehydrogenase (MDH), glutamate dehydrogenase (GDH), β-hydroxybutyrate dehydrogenase (β-OH-BDH) and glucose-6-phosphate dehydrogenase (G-6-PDH) were histochemically located in the testes of buffaloes, goats and rams. The enzyme activities varied with the enzyme, species and cell type. The activities in the seminiferous tubules were correlated with the stages of seminiferous epithelial cycle (SEC). During this cycle, the activities in the Sertoli cells, spermatogonia and spermatocytes remained unaltered in contrast to those in the spermatids. The activities of SDH, ICDH and MDH were relatively greater in buffalo, while goat and ram resembled each other quite closely. ICDH and MDH preferred NADP to NAD. In the three species, the activities of ICDH, SDH and MDH generally followed an increasing order. G-6-PDH was greater in the interstitial tissue of buffalo than in goat and ram; the maximum activity of this enzyme in each species was found in the spermatogonia. In comparison with G-6-PDH, GDH was less evident in the interstitial tissue of buffalo and goat; Sertoli cells and spermatogonia also showed relatively less MDH activity whereas the other germ cells may have relatively less, similar or more, GDH activity depending on the species. β-OHBDH activity was similar in the interstitial tissue of the three species, but in the seminiferous tubule, the activity was less in goat. But for GDH and β-OH-BDH which could show different results, the activities of other enzymes generally decreased from spermatogonia through spermatocytes to spermatids but increased during spermiogenesis. In spermatozoa, the enzymes were observed only in the mid-piece. The possible physiological significance of the results is discussed in relation to different metabolic pathways.


Sign in / Sign up

Export Citation Format

Share Document