Regulation of nuclear membrane assembly and maintenance during in vitro maturation of mouse oocytes: role of pyruvate and protein synthesis

1991 ◽  
Vol 265 (1) ◽  
pp. 105-112 ◽  
Author(s):  
Haekwon Kim ◽  
Allen W. Schuetz
Author(s):  
Li Meng ◽  
Jean Rutledge ◽  
Ying Zhu ◽  
Gerald M. Kidder ◽  
Firouz Khamsi ◽  
...  

2006 ◽  
Vol 18 (2) ◽  
pp. 230
Author(s):  
X.-S. Cui ◽  
X.-Y. Li ◽  
N.-H. Kim

Cell division cycle 42 (Cdc42), a member of the Rho family of small guanosine triphosphatase (GTPase) proteins, regulates multiple cell functions, including motility, proliferation, apoptosis, and cell morphology. In order to gain insight into the role of Cdc42 in embryo development, we first characterized mRNA and protein levels of Cdc42 in mouse oocytes and early embryogenesis. We then examined the possible role of the gene in oocyte maturation and pre-implantation development using RNA interference analysis. The relative abundance of Cdc42 transcripts were measured by real time RT-PCR. After normalization with histone H2a mRNA levels, the mRNA expression of Cdc42 was abundant in immature oocytes and reduced slightly in zygotes and 2- to 8-cell stage embryos. The expression levels were significantly increased during the morula and blastocyst stages. Indirect immunocytochemistry showed protein synthesis of Cdc42 in oocytes and embryos of all stages. Introducing small interference RNA (siRNA) of Cdc42 into germinal vesicle stage oocytes or zygotes specifically reduce both mRNA expression and protein synthesis of Cdc42 in metaphase II stage oocytes and early embryos developing in vitro. Meiotic maturation was significantly reduced following siRNA injection into germinal vesicle stage oocytes. It is evident that actin distribution in siRNA treated blastocysts is morphologically abnormal following injection of siRNA for Cdc42. Injection of siRNA into zygotes did not influence cleavage, but significantly decreased in vitro development to morulae and blastocysts. While housekeeping genes such as tissue plasminogen activator were not altered by siRNA, wiskott-aldrich syndrome protein family 1 (WASP1) mRNA was down-regulated in the morula. Interestingly, mRNA of WASP1, tubulin alpha 1 (Tuba1), and actin-related protein 2/3 complex subunit V (Arpc5) increased at the blastocyst stage following siRNA injection. These results suggest that Cdc42 plays an important role during oocyte maturation and early pre-implantation development, likely through linkage with several other genes. This work was funded by a grant from National Research Laboratory Program in Korea.


1976 ◽  
Vol 20 (3) ◽  
pp. 549-568 ◽  
Author(s):  
P.M. Wassarman ◽  
G.E. Letourneau

The nature, intracellular distribution, and role of proteins synthesized during meiotic maturation of mouse oocytes in vitro have been examined. Proteins synthesized during the initial stages of maturation are concentrated within the nucleus (germinal vesicle) and become intimately associated with the condensing chromosomes. Inhibition of protein synthesis during this period does not prevent germinal vesicle dissolution or chromosome condensation, but meiotic progression is blocked reversibly at the circular bivalent stage. A protein is synthesized during meiotic maturation of the mouse oocyte which exhibits several of the characteristics of the very lysine-rich histone, FI; this and other histones are phosphorylated during the initial stages of maturation. These results are discussed in relation to studies of meiotic maturation of oocytes from non-mammalian species and chromosome condensation in both oocytes and mitotic cells.


Author(s):  
Cecilia Valencia ◽  
Felipe Alonso Pérez ◽  
Carola Matus ◽  
Ricardo Felmer ◽  
María Elena Arias

Abstract The present study evaluated the mechanism by which protein synthesis inhibitors activate bovine oocytes. The aim was to analyze the dynamics of MPF and MAPKs. MII oocytes were activated with ionomycin (Io), ionomycin+anisomycin (ANY) and ionomycin+cycloheximide (CHX) and by in vitro fertilization (IVF). The expression of cyclin B1, p-CDK1, p-ERK1/2, p-JNK, and p-P38 were evaluated by immunodetection and the kinase activity of ERK1/2 was measured by enzyme assay. Evaluations at 1, 4, and 15 hours postactivation (hpa) showed that the expression of cyclin B1 was not modified by the treatments. ANY inactivated MPF by p-CDK1Thr14-Tyr15 at 4 hpa (P < 0.05), CHX increased pre-MPF (p-CDK1Thr161 and p-CDK1Thr14-Tyr15) at 1 hpa and IVF increased p-CDK1Thr14-Tyr15 at 17 hours postfertilization (hpf) (P < 0.05). ANY and CHX reduced the levels of p-ERK1/2 at 4 hpa (P < 0.05) and its activity at 4 and 1 hpa, respectively (P < 0.05). Meanwhile, IVF increased p-ERK1/2 at 6 hpf (P < 0.05); however, its kinase activity decreased at 6 hpf (P < 0.05). p-JNK in ANY, CHX, and IVF oocytes decreased at 4 hpa (P < 0.05). p-P38 was only observed at 1 hpa, with no differences between treatments. In conclusion, activation of bovine oocytes by ANY, CHX, and IVF inactivates MPF by CDK1-dependent specific phosphorylation without cyclin B1 degradation. ANY or CHX promoted this inactivation, which seemed to be more delayed in the physiological activation (IVF). Both inhibitors modulated MPF activity via an ERK1/2-independent pathway, whereas IVF activated the bovine oocytes via an ERK1/2-dependent pathway. Finally, ANY does not activate the JNK and P38 kinase pathways.


1999 ◽  
Vol 14 (Suppl_3) ◽  
pp. 308-308
Author(s):  
C.M.H. Combelles ◽  
M.J. Carabatsos ◽  
J.B. Mailhes ◽  
S.N. London ◽  
D.F. Albertini

Blood ◽  
1969 ◽  
Vol 34 (3) ◽  
pp. 348-356 ◽  
Author(s):  
SEYMOUR WERTHAMER ◽  
CARL HICKS ◽  
LEONARD AMARAL

Abstract The in vitro effects of sterols, cholesterol and 3-methyl cholanthrene and steroids, cortisol, prednisolone and testosterone on protein synthesis in separate popultions of human lymphocytes and leukocytes has been investigated. It has been shown that all agents used result in the inhibition of protein synthesis under these conditions. It has also been shown that the inhibitory mechanism of the steroid hormones requires the presence of plasma, presumably as a protein binding factor in order to achieve its effect. The sterol, cholesterol and 3-methyl cholanthrene, in the absence of plasma, still inhibit amino acid incorporation. However, in the case of cholesterol, the magnitude of inhibition is lower than that observed in the presence of plasma, perhaps indicating a partial plasma dependence. The results presented therefore support the hypothesis that the inhibition of lymphocyte protein synthesis by steroid hormones occurs only when the steroid is bound to a plasma protein. The physiologic role of the plasma protein-cortisol complex and its relation to the condition of lymphopenia in man is discussed.


Development ◽  
1987 ◽  
Vol 100 (4) ◽  
pp. 599-609
Author(s):  
J.-C. Beetschen ◽  
J. Gautier

Axolotl eggs were heat shocked (36.8°C, 10min) inside their jelly layers. Heat shock (HS) was shown to induce the precocious appearance of a grey crescent (GC) in a number of eggs immediately after fertilization (Benford & Namenwirth, 1974). It was also demonstrated that this phenomenon occurs in fertilized or artificially activated eggs only when they are shocked within 11/2h after spawning. The GC forms still later in heated unfertilized, nonactivated eggs. The role of the jelly layers is considered to be mechanical: a proportion of eggs is maintained in a tilted position until the egg is able to orient animal pole upwards under the influence of gravity as a late consequence of activation. The jelly layers are not essential if the eggs are artificially tilted or rotated during HS. GC formation can also be induced in in vitro maturing oocytes, provided they are tilted during HS. Gravity thus plays an essential role in the cytoplasmic rearrangements leading to HS-induced GC formation. Our results indicate a synergistic action between heat and gravity in this process. The cytological appearance of the GC formed in those experiments is that of a ‘Born's crescent’ with a conspicuous ‘vitelline wall’ (Pasteels, 1964). When oocytes are enucleated before maturation, HS has no effect on GC formation. A nuclear factor is therefore essential, as has been demonstrated in early GC formation induced by inhibitors of protein synthesis. Finally, incorporation of amino acids into oocyte proteins appears to be rapidly inhibited by HS (from 5 min). However, we cannot conclude that GC formation is in fact triggered by inhibition of protein synthesis. It is also likely that HS disrupts cytoskeletal structure, hence facilitating cytoplasmic rearrangements. Nevertheless, these results are in agreement with the scheme we recently proposed for GC formation in the rotated axolotl oocyte (Gautier & Beetschen, 1985).


2017 ◽  
Vol 7 (1) ◽  
Author(s):  
Lei Gao ◽  
Gongxue Jia ◽  
Ai Li ◽  
Haojia Ma ◽  
Zhengyuan Huang ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document