Heat-shock-induced grey crescent formation in axolotl eggs and oocytes: the role of gravity

Development ◽  
1987 ◽  
Vol 100 (4) ◽  
pp. 599-609
Author(s):  
J.-C. Beetschen ◽  
J. Gautier

Axolotl eggs were heat shocked (36.8°C, 10min) inside their jelly layers. Heat shock (HS) was shown to induce the precocious appearance of a grey crescent (GC) in a number of eggs immediately after fertilization (Benford & Namenwirth, 1974). It was also demonstrated that this phenomenon occurs in fertilized or artificially activated eggs only when they are shocked within 11/2h after spawning. The GC forms still later in heated unfertilized, nonactivated eggs. The role of the jelly layers is considered to be mechanical: a proportion of eggs is maintained in a tilted position until the egg is able to orient animal pole upwards under the influence of gravity as a late consequence of activation. The jelly layers are not essential if the eggs are artificially tilted or rotated during HS. GC formation can also be induced in in vitro maturing oocytes, provided they are tilted during HS. Gravity thus plays an essential role in the cytoplasmic rearrangements leading to HS-induced GC formation. Our results indicate a synergistic action between heat and gravity in this process. The cytological appearance of the GC formed in those experiments is that of a ‘Born's crescent’ with a conspicuous ‘vitelline wall’ (Pasteels, 1964). When oocytes are enucleated before maturation, HS has no effect on GC formation. A nuclear factor is therefore essential, as has been demonstrated in early GC formation induced by inhibitors of protein synthesis. Finally, incorporation of amino acids into oocyte proteins appears to be rapidly inhibited by HS (from 5 min). However, we cannot conclude that GC formation is in fact triggered by inhibition of protein synthesis. It is also likely that HS disrupts cytoskeletal structure, hence facilitating cytoplasmic rearrangements. Nevertheless, these results are in agreement with the scheme we recently proposed for GC formation in the rotated axolotl oocyte (Gautier & Beetschen, 1985).

Development ◽  
1956 ◽  
Vol 4 (1) ◽  
pp. 73-92
Author(s):  
Lucena J. Barth

That the materials for protein synthesis in the frog egg must come from yolk is indicated by the constancy of total nitrogen during development (Gregg & Ballentine, 1946) and the fact that the egg can develop with no outside source of organic or inorganic materials. When and where in the developing egg new proteins arise, and what are the mechanisms which control the rate and direct the specificity of such syntheses, are problems which are beginning to occupy increasing numbers investigators using several methods of attack—immunological, enzymological, electrophoretic, and incorporation of labelled amino acids, for example. Brachet (1940), using histochemical methods, described a change in the distribution of sulphydryl proteins coincident with grey crescent formation. In the newly-laid egg of Triton or Pleurodeles Brachet found the sulphydryl proteins to be restricted to a small spot centred about the maturation figure near the animal pole. This picture changed during the first few hours after fertilization.


Author(s):  
Cecilia Valencia ◽  
Felipe Alonso Pérez ◽  
Carola Matus ◽  
Ricardo Felmer ◽  
María Elena Arias

Abstract The present study evaluated the mechanism by which protein synthesis inhibitors activate bovine oocytes. The aim was to analyze the dynamics of MPF and MAPKs. MII oocytes were activated with ionomycin (Io), ionomycin+anisomycin (ANY) and ionomycin+cycloheximide (CHX) and by in vitro fertilization (IVF). The expression of cyclin B1, p-CDK1, p-ERK1/2, p-JNK, and p-P38 were evaluated by immunodetection and the kinase activity of ERK1/2 was measured by enzyme assay. Evaluations at 1, 4, and 15 hours postactivation (hpa) showed that the expression of cyclin B1 was not modified by the treatments. ANY inactivated MPF by p-CDK1Thr14-Tyr15 at 4 hpa (P < 0.05), CHX increased pre-MPF (p-CDK1Thr161 and p-CDK1Thr14-Tyr15) at 1 hpa and IVF increased p-CDK1Thr14-Tyr15 at 17 hours postfertilization (hpf) (P < 0.05). ANY and CHX reduced the levels of p-ERK1/2 at 4 hpa (P < 0.05) and its activity at 4 and 1 hpa, respectively (P < 0.05). Meanwhile, IVF increased p-ERK1/2 at 6 hpf (P < 0.05); however, its kinase activity decreased at 6 hpf (P < 0.05). p-JNK in ANY, CHX, and IVF oocytes decreased at 4 hpa (P < 0.05). p-P38 was only observed at 1 hpa, with no differences between treatments. In conclusion, activation of bovine oocytes by ANY, CHX, and IVF inactivates MPF by CDK1-dependent specific phosphorylation without cyclin B1 degradation. ANY or CHX promoted this inactivation, which seemed to be more delayed in the physiological activation (IVF). Both inhibitors modulated MPF activity via an ERK1/2-independent pathway, whereas IVF activated the bovine oocytes via an ERK1/2-dependent pathway. Finally, ANY does not activate the JNK and P38 kinase pathways.


Blood ◽  
1969 ◽  
Vol 34 (3) ◽  
pp. 348-356 ◽  
Author(s):  
SEYMOUR WERTHAMER ◽  
CARL HICKS ◽  
LEONARD AMARAL

Abstract The in vitro effects of sterols, cholesterol and 3-methyl cholanthrene and steroids, cortisol, prednisolone and testosterone on protein synthesis in separate popultions of human lymphocytes and leukocytes has been investigated. It has been shown that all agents used result in the inhibition of protein synthesis under these conditions. It has also been shown that the inhibitory mechanism of the steroid hormones requires the presence of plasma, presumably as a protein binding factor in order to achieve its effect. The sterol, cholesterol and 3-methyl cholanthrene, in the absence of plasma, still inhibit amino acid incorporation. However, in the case of cholesterol, the magnitude of inhibition is lower than that observed in the presence of plasma, perhaps indicating a partial plasma dependence. The results presented therefore support the hypothesis that the inhibition of lymphocyte protein synthesis by steroid hormones occurs only when the steroid is bound to a plasma protein. The physiologic role of the plasma protein-cortisol complex and its relation to the condition of lymphopenia in man is discussed.


2013 ◽  
Vol 57 (5) ◽  
pp. 77S
Author(s):  
Ali Navi ◽  
Rebekah Yu ◽  
Xu Shi-Wen ◽  
Sidney Shaw ◽  
George Hamilton ◽  
...  

Author(s):  
Jelena Damm ◽  
Joachim Roth ◽  
Rüdiger Gerstberger ◽  
Christoph Rummel

AbstractBackground:Studies with NF-IL6-deficient mice indicate that this transcription factor plays a dual role during systemic inflammation with pro- and anti-inflammatory capacities. Here, we aimed to characterize the role of NF-IL6 specifically within the brain.Methods:In this study, we tested the capacity of short interfering (si) RNA to silence the inflammatory transcription factor nuclear factor-interleukin 6 (NF-IL6) in brain cells underResults:In cells of a mixed neuronal and glial primary culture from the ratConclusions:This approach was, thus, not suitable to characterize the role NF-IL6 in the brain


Cells ◽  
2020 ◽  
Vol 9 (2) ◽  
pp. 479 ◽  
Author(s):  
Agnieszka Smieszek ◽  
Klaudia Marcinkowska ◽  
Ariadna Pielok ◽  
Mateusz Sikora ◽  
Lukas Valihrach ◽  
...  

MiR-21 is being gradually more and more recognized as a molecule regulating bone tissue homeostasis. However, its function is not fully understood due to the dual role of miR-21 on bone-forming and bone-resorbing cells. In this study, we investigated the impact of miR-21 inhibition on pre-osteoblastic cells differentiation and paracrine signaling towards pre-osteoclasts using indirect co-culture model of mouse pre-osteoblast (MC3T3) and pre-osteoclast (4B12) cell lines. The inhibition of miR-21 in MC3T3 cells (MC3T3inh21) modulated expression of genes encoding osteogenic markers including collagen type I (Coll-1), osteocalcin (Ocl), osteopontin (Opn), and runt-related transcription factor 2 (Runx-2). Inhibition of miR-21 in osteogenic cultures of MC3T3 also inflected the synthesis of OPN protein which is essential for proper mineralization of extracellular matrix (ECM) and anchoring osteoclasts to the bones. Furthermore, it was shown that in osteoblasts miR-21 regulates expression of factors that are vital for survival of pre-osteoclast, such as receptor activator of nuclear factor κB ligand (RANKL). The pre-osteoclast cultured with MC3T3inh21 cells was characterized by lowered expression of several markers associated with osteoclasts’ differentiation, foremost tartrate-resistant acid phosphatase (Trap) but also receptor activator of nuclear factor-κB ligand (Rank), cathepsin K (Ctsk), carbonic anhydrase II (CaII), and matrix metalloproteinase (Mmp-9). Collectively, our data indicate that the inhibition of miR-21 in MC3T3 cells impairs the differentiation and ECM mineralization as well as influences paracrine signaling leading to decreased viability of pre-osteoclasts.


1997 ◽  
Vol 9 (6) ◽  
pp. 603 ◽  
Author(s):  
J. C. Bell ◽  
L. C. Smith ◽  
R. Rumpf ◽  
A. K. Goff

The role of the nucleus in protein synthesis reprogramming during oocyte maturation was examined in immature or mature bovine oocytes, enucleated at the germinal vesicle (GV) stage or the metaphase II (MII) stage. Cumulusoocyte complexes (COCs) were denuded before or after maturationin vitro. Denuded oocytes were (i) enucleated at the GV or MII stage (after DNA staining and ultraviolet (UV) exposure), (ii) stained and exposed to UV but not enucleated, or (iii) used as controls. After treatment, oocytes were labelled for 4 h with35S-methionine or were matured for 24 h before labelling. GV- or MII- karyoplasts and small portions of cytoplasm (cytoplasts), removed during enucleation, were also labelled. Labelled oocytes, karyoplasts or cytoplasts were prepared for one-dimensional polyacrylamide gel electrophoresis. Incorporation of labelled methionine into oocyte protein was measured. Enucleation did not affect protein synthesis reprogramming, but incorporation of 35S-methionine in immature UV-stained oocytes was high-possibly due to nuclear repair mechanisms. Protein proles of GV- and MII- karyoplasts differed from those of immature and mature oocytes. In conclusion, normal protein synthesis reprogramming in the cytoplasm can occur in the absence of the nucleus, and specic proteins are synthesized in the nuclear region.


2019 ◽  
Vol 19 (1) ◽  
Author(s):  
Danni Deng ◽  
Kaiming Luo ◽  
Hongmei Liu ◽  
Xichen Nie ◽  
Lian Xue ◽  
...  

Abstract Background Glioma is the most common central nervous system (CNS) tumour. p62, an important autophagy adaptor, plays a crucial role in cancer. However, the role of p62 in the progression of glioma is poorly characterized. Methods We examined the expression of p62 in glioma tissues and cell lines. Then we investigated the function of p62 in vitro, and clarified the mechanism underlying the regulation of p62 expression. Results We revealed that p62 was upregulated at both the mRNA and protein levels in human glioma tissues irrelevant to isocitrate dehydrogenase (IDH) status. Then, we found that overexpression of p62 promoted glioma progression by promoting proliferation, migration, glycolysis, temozolomide (TMZ) resistance and nuclear factor κB (NF-κB) signalling pathway, and repressing autophagic flux and reactive oxygen species (ROS) in vitro. In accordance with p62 overexpression, knockdown of p62 exerted anti-tumour effects in glioma cells. Subsequently, we demonstrated that miR-124-3p directly targeted the 3′-UTR of p62 mRNA, leading to the downregulation of p62. Finally, we found that p62 function could be partially reversed by miR-124-3p overexpression. Conclusions Our results demonstrate that p62 can be targeted by miR-124-3p and acts as an oncogene in glioma, suggesting the potential value of p62 as a novel therapeutic target for glioma.


Author(s):  
Li Meng ◽  
Jean Rutledge ◽  
Ying Zhu ◽  
Gerald M. Kidder ◽  
Firouz Khamsi ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document