scholarly journals Dexamethasone treatment fails to increase arginine-induced insulin release in healthy subjects with low insulin response

Diabetologia ◽  
1992 ◽  
Vol 35 (4) ◽  
pp. 367-371 ◽  
Author(s):  
V. Grill ◽  
M. Alvarsson ◽  
S. Efendic
1967 ◽  
Vol 55 (2) ◽  
pp. 330-345 ◽  
Author(s):  
Erol Cerasi ◽  
Rolf Luft

ABSTRACT The insulin response during a standardized glucose infusion (GIT) was studied in a group of 13 monozygotic twin pairs previously registered as consisting of one diabetic/one non-diabetic member. At the time of the study three of the non-diabetic subjects had developed overt diabetes and three decreased glucose tolerance only. Of the non-diabetic members all but one (with diabetes due possibly to chronic pancreatitis in the sibling) showed an insulin response similar to that seen in diabetic subjects, and in healthy subjects previously assumed to be potential diabetics. The present study therefore supports our earlier suggestion that a low insulin response characterizes potential diabetes. There was a striking similarity between the insulin curves in the twin pairs, irrespective whether diabetes occurred in one, in both or in none of the members. It is suggested as a working hypothesis that the type of insulin response to glucose infusion is genetically determined, and that a low insulin response is a prerequisite for the development of diabetes mellitus.


1992 ◽  
Vol 263 (4) ◽  
pp. E663-E666 ◽  
Author(s):  
A. Khan ◽  
C. G. Ostenson ◽  
P. O. Berggren ◽  
S. Efendic

Normoglycemic ob/ob mice were treated for 24 or 48 h with either 25 micrograms/day of dexamethasone or saline. After an overnight fast, the animals were killed and pancreatic islets were incubated with 3H2O or [U-14C]glucose or [5-3H]glucose at 5.5 and 16.7 mM glucose. Incorporation of 3H from 3H2O into carbon 2 of medium glucose and the yield of 14CO2 from [U-14C]glucose and 3H2O from [5-3H]glucose were measured. Dexamethasone treatment for 48 h significantly increased the rate of dephosphorylation of glucose in islets both at 5.5 mM (24 vs. 16%) and 16.7 mM (56 vs. 36%) glucose, whereas glucose oxidation and utilization were unaffected. Dexamethasone treatment also inhibited insulin release by approximately 60% at 5.5 and 16.7 mM glucose, either in the presence or absence of 10 mM arginine, but had no effect when insulin release was stimulated by 1 mM 3-isobutyl-1-methylxanthine. Moreover, 24-h treatment with dexamethasone significantly increased glucose cycling at low and high glucose concentrations in the medium and inhibited insulin responsiveness to glucose and arginine. In conclusion, short-term dexamethasone treatment increases glucose flux through glucose-6-phosphatase in islets from ob/ob mice. This effect may contribute to the decreased insulin response to glucose and arginine found in animals treated with dexamethasone.


2007 ◽  
Vol 192 (2) ◽  
pp. 389-394 ◽  
Author(s):  
Nguyen Khanh Hoa ◽  
Åke Norberg ◽  
Rannar Sillard ◽  
Dao Van Phan ◽  
Nguyen Duy Thuan ◽  
...  

We recently showed that phanoside, a gypenoside isolated from the plant Gynostemma pentaphyllum, stimulates insulin secretion from rat pancreatic islets. To study the mechanisms by which phanoside stimulates insulin secretion. Isolated pancreatic islets of normal Wistar (W) rats and spontaneously diabetic Goto-Kakizaki (GK) rats were batch incubated or perifused. At both 3.3 and 16.7 mM glucose, phanoside stimulated insulin secretion several fold in both W and diabetic GK rat islets. In perifusion of W islets, phanoside (75 and 150 μM) dose dependently increased insulin secretion that returned to basal levels when phanoside was omitted. When W rat islets were incubated at 3.3 mM glucose with 150 μM phanoside and 0.25 mM diazoxide to keep K-ATP channels open, insulin secretion was similar to that in islets incubated in 150 μM phanoside alone. At 16.7 mM glucose, phanoside-stimulated insulin secretion was reduced in the presence of 0.25 mM diazoxide (P<0.01). In W islets depolarized by 50 mM KCl and with diazoxide, phanoside stimulated insulin release twofold at 3.3 mM glucose but did not further increase the release at 16.7 mM glucose. When using nimodipine to block L-type Ca2+ channels in B-cells, phanoside-induced insulin secretion was unaffected at 3.3 mM glucose but decreased at 16.7 mM glucose (P<0.01). Pretreatment of islets with pertussis toxin to inhibit exocytotic Ge-protein did not affect insulin response to 150 μM phanoside. Phanoside stimulated insulin secretion from Wand GK rat islets. This effect seems to be exerted distal to K-ATP channels and L-type Ca2+ channels, which is on the exocytotic machinery of the B-cells.


1996 ◽  
Vol 134 (5) ◽  
pp. 617-625 ◽  
Author(s):  
Per Lindström ◽  
Janove Sehlin ◽  
Barbara J Frankel

Lindström P. Sehlin J, Frankel BJ. Glucose-stimulated elevation of cytoplasmic calcium is defective in the diabetic Chinese hamster islet B cell. Eur J Endocrinol 1996:134:617–25. ISSN 0804–4643 To characterize insulin release and cytoplasmic free Ca2+ [Ca2+]i) levels in the diabetic Chinese hamster islet B cell, islets from genetically normal subline M) and diabetic (subline L) hamsters were collagenase isolated. Insulin release and glucose utilization (conversion of D-[5-3H]glucose to 3H2O) were measured in whole islets; [Ca2+]i levels were measured in single islet cells using fura-2, The Ca2+ channel agonist, 12 mmol/l perchlorate, ClO4−, increased the subnormal insulin response during 20 mmol/l glucose perifusion, but did not normalize it. Glucose utilization measured over a 2-h period was normal. Glucose induced an initial decrease and then a rise in [Ca2+]i in 85% of the normal (presumably B) cells. In diabetic cells, the [Ca2+]i response was delayed, subnormal and only observed in 23% of the cells. When perchlorate or another Ca2+ channel agonist, 10 μmol/l CGP 28392, was added with glucose, a larger proportion of the diabetic cells (61–67%) showed increased [Ca2+]i and the mean [Ca2+]i response was not different from normal. However, neither perchlorate nor CGP 28392 could normalize glucose-stimulated insulin release, and K+-induced insulin release was decreased in diabetic islets. The K+ -induced [Ca2+]i rise was essentially normal in all the diabetic islet cells. Therefore, the diabetic hamster islet appears to metabolize glucose normally, but has a diminished insulin response to glucose and K+. The Ca2+ channel agonists markedly improve the subnormal [Ca2+]i response but not the insulin response. Glucose-induced elevation of [Ca2−]i and exocytosis appear defective in the diabetic Chinese hamster B cell. Per Lindström, Department of Histology and Cell Biology, Umea University, S-901 87 Umea, Sweden


2003 ◽  
pp. 403-406 ◽  
Author(s):  
L Briatore ◽  
G Andraghetti ◽  
R Cordera

OBJECTIVE: The independent role of glucose and insulin in ghrelin regulation is still controversial; this is also because in healthy subjects it is difficult to isolate the increase of glucose from that of insulin. The aim of this study was to discriminate the effect of glucose increase alone and early insulin response on plasma ghrelin, comparing ghrelin variation after i.v. glucose between healthy subjects and type 2 diabetic (T2DM) subjects, in whom the early insulin response to i.v. glucose is abolished. METHODS: Plasma glucose, insulin and ghrelin levels were measured 0, 3, 5, 10, 30, 45 and 60 min after a 5 g glucose i.v. bolus in seven healthy control subjects and eight T2DM subjects. RESULTS: There were no significant differences in body mass index, basal insulin and basal ghrelin between T2DM and healthy subjects. Basal glucose levels were higher in T2DM subjects than in controls. After i.v. glucose administration, plasma glucose increased significantly in both groups and the glucose peak was higher in T2DM subjects than in controls (9.67+/-1.25 (s.d.) vs 6.88+/-1.00 mmol/l, P<0.01). Insulin increased rapidly in controls, while in T2DM subjects, plasma insulin did not rise in the first 10 min. After the glucose bolus, plasma ghrelin showed a significant reduction both in controls and in T2DM subjects after 5 min. CONCLUSION: These findings indicate that a low-dose i.v. glucose bolus reduces ghrelin both in controls and in T2DM subjects and therefore that early insulin response does not affect plasma ghrelin.


1982 ◽  
Vol 242 (1) ◽  
pp. E53-E58
Author(s):  
J. G. Yovos ◽  
T. M. O'Dorisio ◽  
T. N. Pappas ◽  
S. Cataland ◽  
F. B. Thomas ◽  
...  

Insulin release following intravenous administration of an amino acid solution with and without a simultaneous infusion of varying amounts of porcine gastric inhibitory polypeptide (GIP) was studied in dogs. Group I received a 10-amino acid mixture (300 mosmol/kg iv) at 16.6 ml/min for 1 h; group II, amino acid mixture plus 0.5 micrograms.kg-1.h-1 porcine GIP; group III, amino acid mixture plus 1.0 micrograms.kg-1.h-1 of GIP; group IV (a and b) received either 0.5 or 1.0 micrograms.kg-1.h-1 of GIP alone. Compared to group I, groups II and III had a greater insulin response during the first 30 min of the infusion. Group] IV (a and b) showed no insulin release. Glucose concentrations showed no significant change in all groups. From these results, it is concluded that insulin release after intravenous infusion of an amino acid mixture plus GIP is greater than after amino acids or GIP alone. It appears that this effect is more pronounced in the early phase of insulin release.


1976 ◽  
Vol 231 (4) ◽  
pp. 1246-1249 ◽  
Author(s):  
IM Burr ◽  
AE Slonim ◽  
V Burke ◽  
T Fletcher

An in vitro perifusion system utilizing collagen-medium calcium on the dynamics of insulin release as induced by acetylcholine (ACh) stimulation (in the presence of glucose, 2.4 mM) and as modified by prior perfusion of islets in epinephrine. Continuous challenge with ACh produces a biphasic insulin release response, both phases of which are reduced when the medium calcium concentration is reduced during stimulation; when the calcium content is reduced during an initial perifusion period of 30 min and then replaced during subsequent stimulation only the first phase of the response to ACh is affected; perifusion with epinephrine prior to stimulation with ACh produces enhancement of both phases of ACh-induced insulin release when calcium in both media is normal. However,.when this experiment is repeated utilizing a medium with low calcium content during the period of exposure to epinephrine the priming effect of epinephrine on the subsequent insulin response to ACh is abolished (in fact, reversed). These studies provide direct evidence for a role for calcium in mediating an effect of epinephrine on insulin release. Further, the data suggest that epinephrine affects Ca transport in islets in some manner beyond stimulating net efflux from islets, perhaps by enhancing membrane binding of calcium.


1983 ◽  
Vol 245 (6) ◽  
pp. E591-E597 ◽  
Author(s):  
D. Giugliano ◽  
P. Di Pinto ◽  
R. Torella ◽  
N. Frascolla ◽  
F. Saccomanno ◽  
...  

These studies were undertaken to evaluate in humans the possible physiological role of prostaglandins of the E series (PGE) in modulating insulin release and to assess whether endogenous PGE synthesis may account for the biphasic pattern of insulin secretion. We used a square-wave glucose stimulation previously determined to give maximal biphasic insulin release. Infusion of lysine acetylsalicylate to block the synthesis of endogenous PGE increased by twofold total insulin response to glucose and also converted insulin release to a multiphasic pattern. The infusion of exogenous PGE1 (0.2 microgram X kg-1 X min-1) or PGE2 (10 micrograms/min) in addition to lysine acetylsalicylate restored the typical biphasic pattern of insulin release and also decreased total insulin release to values similar to those of control studies. Infusion of either PGE1 or PGE2 in the absence of lysine acetylsalicylate reset insulin secretion to a lower level without altering the kinetics of release. On the basis of these results, it is hypothesized that endogenous PGE released in response to glucose stimulation exert an inhibiting effect on insulin release that becomes biphasic in appearance.


1993 ◽  
Vol 265 (1) ◽  
pp. E1-E9 ◽  
Author(s):  
A. Salehi ◽  
I. Lundquist

We investigated the relation between activities of islet glycogenolytic alpha-glucosidehydrolases and insulin secretion induced by glucose and 3-isobutyl-1-methylxanthine (IBMX) by means of suppressing 1) insulin release (Ca2+ deficiency) and 2) islet alpha-glucosidehydrolase activity (selective inhibition by the deoxynojirimycin derivative miglitol). Additionally, the in vivo insulin response to both secretagogues was examined. We observed that, similar to glucose-induced insulin release, islet glycogenolytic hydrolases (acid amyloglucosidase, acid alpha-glucosidase) were highly Ca2+ dependent. Acid phosphatase, N-acetyl-beta-D-glucosaminidase, or neutral alpha-glucosidase (endoplasmic reticulum) was not influenced by Ca2+ deficiency. In Ca2+ deficiency IBMX-induced insulin release was unaffected and was accompanied by reduced activities of islet alpha-glucosidehydrolases. Miglitol strongly inhibited glucose-induced insulin release concomitant with a marked suppression of islet alpha-glucosidehydrolase activities. Direct addition of miglitol to islet homogenates suppressed acid amyloglucosidase [half-maximal effective concentration (EC50) approximately 10(-6) M] and acid alpha-glucosidase. Acid phosphatase and N-acetyl-beta-D-glucosaminidase were unaffected. The miglitol-induced inhibition of glucose-stimulated insulin release was dose dependent (EC50 approximately 10(-6) M) and displayed a remarkable parallelism with the inhibition curve for acid amyloglucosidase. The in vivo insulin secretory response to glucose was markedly reduced in dystrophic mice (low amyloglucosidase), whereas the response to IBMX was unaffected. In summary, islet glycogenolytic hydrolases are Ca2+ dependent, and acid amyloglucosidase is directly involved in the multifactorial process of glucose-induced insulin release. In contrast the mechanisms of IBMX-stimulated insulin secretion operate independently of these enzymes. The effects of miglitol, a drug currently used in diabetes therapy, deserves further investigation.


Sign in / Sign up

Export Citation Format

Share Document