Work-induced potassium changes in skeletal muscle and effluent venous blood assessed by liquid ion-exchanger microelectrodes

1976 ◽  
Vol 362 (1) ◽  
pp. 85-94 ◽  
Author(s):  
P. Hník ◽  
M. Holas ◽  
I. Krekule ◽  
N. Kříž ◽  
J. Mejsnar ◽  
...  
1987 ◽  
Vol 65 (12) ◽  
pp. 2488-2491 ◽  
Author(s):  
M. J. Mason

The present results demonstrate the sensitivity of the Corning chloride liquid ion exchanger 477913 to L-lactate. Microelectrodes filled with this exchanger showed responses to changes in L-lactate concentration in chloride-free solutions. In these experiments L-lactate replaced gluconate in equimolar amounts. Microelectrodes filled with this exchanger were used to qualitatively detect changes in intracellular anion in chloride-depleted frog sartorius muscle fibres during exposure to extracellular concentrations of L-lactate. The increase in intracellular anion concentration is consistent with the movement of L-lactate into the cell. This microelectrode enables one to qualitatively monitor changes in intracellular L-lactate in chloride-free experiments without incorporating selectivity coefficients.


Author(s):  
Cécile Bétry ◽  
Aline V. Nixon ◽  
Paul L. Greenhaff ◽  
Elizabeth J. Simpson

Abstract Introduction Skeletal muscle is a major site for whole-body glucose disposal, and determination of skeletal muscle glucose uptake is an important metabolic measurement, particularly in research focussed on interventions that impact muscle insulin sensitivity. Calculating arterial-venous difference in blood glucose can be used as an indirect measure for assessing glucose uptake. However, the possibility of multiple tissues contributing to the composition of venous blood, and the differential in glucose uptake kinetics between tissue types, suggests that sampling from different vein sites could influence the estimation of glucose uptake. This study aimed to determine the impact of venous cannula position on calculated forearm glucose uptake following an oral glucose challenge in resting and post-exercise states. Materials and Methods In 9 young, lean, males, the impact of sampling blood from two antecubital vein positions; the perforating vein (‘perforating’ visit) and, at the bifurcation of superficial and perforating veins (‘bifurcation’ visit), was assessed. Brachial artery blood flow and arterialised-venous and venous blood glucose concentrations were measured in 3 physiological states; resting-fasted, resting-fed, and fed following intermittent forearm muscle contraction (fed-exercise). Results Following glucose ingestion, forearm glucose uptake area under the curve was greater for the ‘perforating’ than for the ‘bifurcation’ visit in the resting-fed (5.92±1.56 vs. 3.69±1.35 mmol/60 min, P<0.01) and fed-exercise (17.38±7.73 vs. 11.40±7.31 mmol/75 min, P<0.05) states. Discussion Antecubital vein cannula position impacts calculated postprandial forearm glucose uptake. These findings have implications for longitudinal intervention studies where serial determination of forearm glucose uptake is required.


Author(s):  
Geoffrey Warnier ◽  
Estelle De Groote ◽  
Florian A. Britto ◽  
Ophélie Delcorte ◽  
Joshua P. Nederveen ◽  
...  

Purpose: To investigate exosome-like vesicle (ELV) plasma concentrations and markers of multivesicular body (MVB) biogenesis in skeletal muscle in response to acute exercise. Methods: Seventeen healthy (BMI: 23.5±0.5kg·m-2) and fifteen prediabetic (BMI: 27.3±1.2kg·m-2) men were randomly assigned to two groups performing an acute cycling bout in normoxia or hypoxia (FiO2 14.0%). Venous blood samples were taken before (T0), during (T30) and after (T60) exercise and biopsies from m. vastus lateralis were collected before and after exercise. Plasma ELVs were isolated by size exclusion chromatography, counted by nanoparticle tracking analysis (NTA), and characterized according to international standards, followed by expression analyses of canonical ELV markers in skeletal muscle. Results: In the healthy normoxic group, the total number of particles in the plasma increased during exercise from T0 to T30 (+313%) followed by a decrease from T30 to T60 (-53%). In the same group, an increase in TSG101, CD81 and HSP60 protein expression was measured after exercise in plasma ELVs; however, in the prediabetic group, the total number of particles in the plasma was not affected by exercise. The mRNA content of TSG101, ALIX and CD9 were upregulated in skeletal muscle after exercise in normoxia; whereas, CD9 and CD81 were downregulated in hypoxia. Conclusions: ELV plasma abundance increased in response to acute aerobic exercise in healthy subjects in normoxia, but not in prediabetic subjects, nor in hypoxia. Skeletal muscle analyses suggested that this tissue did not likely play a major role of the exercise-induced increase in circulating ELVs.


Author(s):  
Athan G Dial ◽  
Cynthia M F Monaco ◽  
Grace K Grafham ◽  
Tirth P Patel ◽  
Mark A Tarnopolsky ◽  
...  

Abstract Context Previous investigations on skeletal muscle health in type 1 diabetes (T1D) has generally focused on later stages of disease progression where comorbidities are present and are posited as a primary mechanism of muscle dysfunction. Objective To investigate skeletal muscle function and morphology across the adult lifespan in those with and without T1D. Design Participants underwent maximal contraction (MVC) testing, resting muscle biopsy and venous blood sampling. Setting Procedures in this study were undertaken at the McMaster University Medical Centre. Participants Sixty-five healthy adult (18-78 years old) men/males and women/females [T1D=34; control=31] matched for age/biological sex/body mass index (BMI)/self-reported physical activity levels were included. Main Outcome Measures Our primary measure in this study was MVC, with supporting histological/immunofluorescent measures. Results After 35 years of age (‘older adults’), MVC declined quicker in T1D subjects compared to controls. Loss of strength in T1D was accompanied by morphological changes associated with accelerated aging. Type 1 myofiber grouping was higher in T1D, and the groups were larger and more numerous than in controls. Older T1D females exhibited more myofibers expressing multiple myosin heavy chain isoforms (hybrid fibers) than controls, another feature of accelerated aging. Conversely, T1D males exhibited a shift towards type 2 fibers, with less evidence of myofiber grouping or hybrid fibers. Conclusions These data suggest impairments to skeletal muscle function and morphology exist in T1D. The decline in strength with T1D is accelerated after 35 years of age and may be responsible for the earlier onset of frailty which characterizes those with diabetes.


1993 ◽  
Vol 264 (5) ◽  
pp. G910-G920 ◽  
Author(s):  
D. I. Soybel ◽  
M. B. Davis ◽  
L. Y. Cheung

Conventional and ion-selective microelectrodes were used to characterize transport of Cl- across the basolateral cell membranes of gastric surface epithelium in isolated preparations of gastric antrum of Necturus. Conventional, voltage-sensing electrodes were used to evaluate changes in membrane potentials and resistances during removal of Cl- from the nutrient perfusate. Liquid ion exchanger Cl(-)-selective microelectrodes were constructed and validated to measure intracellular Cl- activity (aiCl). Our data indicate that 1) aiCl (range 12-25 mM) is close to that predicted if Cl- is distributed across the cell membranes by electrochemical equilibrium, 2) aiCl is not influenced by changes in luminal Cl- content but is susceptible to changes in nutrient Cl- content, 3) Cl- conductances cannot be detected in the basolateral membrane and changes in membrane potentials do not influence aiCl, and 4) Cl- accumulation across the basolateral membrane depends on Na+ and the level of [K+] in the nutrient solution. Inhibition of K(+)-dependent Cl- accumulation, in the absence of nutrient Na+ or in the presence of the inhibitor bumetanide, was demonstrated. These findings suggest that basolateral Na(+)-K(+)-Cl- cotransport is important in regulating cell Cl- levels in surface cells of the gastric antrum in Necturus.


1992 ◽  
Vol 72 (6) ◽  
pp. 2364-2368 ◽  
Author(s):  
E. E. Blaak ◽  
M. A. Van Baak ◽  
K. P. Kempen ◽  
W. H. Saris

Arterialization of venous blood is often used in studying forearm metabolism. Astrup et al. [Am. J. Physiol. 255 (Endocrinol. Metab. 18): E572-E578, 1988] showed that heating of the hand by a warming blanket caused a redistribution of blood flow in the contralateral arm and thus introduced errors in forearm skeletal muscle flux calculations. The present study was undertaken to investigate how hand heating by a warm air box (60 degrees C) would affect metabolism and blood flow in the contralateral arm before and during 3 h after a glucose load. Eleven healthy volunteers (5 males, 6 females) underwent an oral glucose tolerance test (70 g) on two different occasions, one test with and one without heating of the contralateral hand, in random order. Heating the hand for 30 min before glucose intake did not affect skin temperature, rectal temperature, deep venous oxygen saturation, forearm blood flow, or oxygen consumption of forearm skeletal muscle. Although, after the glucose load, heating significantly increased forearm blood flow (P less than 0.05), the integrated response after glucose was not significantly different between control and heating experiments [67 +/- 43 and 117 +/- 41 (SE) ml/100 ml tissue]. With both conditions, there was an increase in skin temperature (P less than 0.001, integrated response control: 369 +/- 79 and heating: 416 +/- 203 degrees C) and oxygen consumption of forearm muscle (control: 290 +/- 73, P less than 0.05 and heating: 390 +/- 130 mumol/100 ml, P less than 0.05) after glucose intake. These responses did not significantly differ between the conditions.(ABSTRACT TRUNCATED AT 250 WORDS)


Physiology ◽  
1986 ◽  
Vol 1 (5) ◽  
pp. 147-149
Author(s):  
PD Harris

In skeletal muscle the level of oxygen in outflowing venous blood is much higher than the level of oxygen in tissue. This puzzling finding suggests that oxygen moves in some unexpected way. The author uses the concept of short-circuit diffusion of oxygen between adjacent arterioles and venules to unravel the mystery and to provide new interpretations of microvascular responses to hypoxia and intermittent claudication.


Sign in / Sign up

Export Citation Format

Share Document