Effect of hand heating by a warm air box on O2 consumption of the contralateral arm

1992 ◽  
Vol 72 (6) ◽  
pp. 2364-2368 ◽  
Author(s):  
E. E. Blaak ◽  
M. A. Van Baak ◽  
K. P. Kempen ◽  
W. H. Saris

Arterialization of venous blood is often used in studying forearm metabolism. Astrup et al. [Am. J. Physiol. 255 (Endocrinol. Metab. 18): E572-E578, 1988] showed that heating of the hand by a warming blanket caused a redistribution of blood flow in the contralateral arm and thus introduced errors in forearm skeletal muscle flux calculations. The present study was undertaken to investigate how hand heating by a warm air box (60 degrees C) would affect metabolism and blood flow in the contralateral arm before and during 3 h after a glucose load. Eleven healthy volunteers (5 males, 6 females) underwent an oral glucose tolerance test (70 g) on two different occasions, one test with and one without heating of the contralateral hand, in random order. Heating the hand for 30 min before glucose intake did not affect skin temperature, rectal temperature, deep venous oxygen saturation, forearm blood flow, or oxygen consumption of forearm skeletal muscle. Although, after the glucose load, heating significantly increased forearm blood flow (P less than 0.05), the integrated response after glucose was not significantly different between control and heating experiments [67 +/- 43 and 117 +/- 41 (SE) ml/100 ml tissue]. With both conditions, there was an increase in skin temperature (P less than 0.001, integrated response control: 369 +/- 79 and heating: 416 +/- 203 degrees C) and oxygen consumption of forearm muscle (control: 290 +/- 73, P less than 0.05 and heating: 390 +/- 130 mumol/100 ml, P less than 0.05) after glucose intake. These responses did not significantly differ between the conditions.(ABSTRACT TRUNCATED AT 250 WORDS)

1998 ◽  
Vol 94 (1) ◽  
pp. 71-77 ◽  
Author(s):  
Daniëlle A. J. M. Kerckhoffs ◽  
Peter Arner ◽  
Jan Bolinder

1. Using microdialysis, we compared lipolysis, as well as the production of lactate, in human adipose tissue and muscle after the ingestion of carbohydrate. 2. The absolute concentrations of glycerol and lactate were measured in subcutaneous adipose tissue, skeletal muscle and arterialized venous blood in eight normal subjects during basal conditions and 4 h after a 75 g oral glucose load. Nutritive blood flow in muscle and adipose tissue was monitored simultaneously with the microdialysis ethanol clearance technique. 3. At baseline, the concentrations of glycerol in adipose tissue and in muscle were about 7 times and about 2.5 times higher respectively than those in plasma. After glucose ingestion, the changes in glycerol concentrations differed significantly between the three compartments (P < 0.0001). In plasma and adipose tissue, the concentrations decreased rapidly and markedly, but returned to baseline levels after 4 h. In muscle, the decrease in glycerol was less pronounced and more protracted. 4. At baseline, the concentrations of lactate in muscle and in adipose tissue were about 3 times and about 1.5 times higher respectively than those in plasma. After the ingestion of glucose, the levels increased transiently in similar ways in muscle, adipose tissue and plasma. The differences in absolute lactate concentrations between the three compartments were maintained after the glucose load (P < 0.001). 5. Adipose tissue blood flow increased transiently after glucose ingestion, whereas muscle blood flow remained unchanged. 6. Both muscle and adipose tissue are a source of glycerol and lactate release during basal conditions and after glucose ingestion. The regulation of lactate production, but not of lipolysis, after carbohydrate ingestion is similar in the two tissues.


1988 ◽  
Vol 255 (4) ◽  
pp. E572-E578 ◽  
Author(s):  
A. Astrup ◽  
L. Simonsen ◽  
J. Bulow ◽  
N. J. Christensen

The classical forearm technique widely used for studies of skeletal muscle metabolism requires arterial cannulation. To avoid arterial puncture it is becoming more common to arterialize blood from a contralateral hand vein by local heating. This modification and the classical method have produced contradictory results regarding the contribution of skeletal muscle to glucose-induced thermogenesis. The effect on forearm circulation and the metabolism of heating the contralateral hand was examined before and after an oral glucose load. The results suggest that contralateral heating increases subcutaneous blood flow and decreases skeletal muscle blood flow. This facilitates mixing of superficial blood with deep venous blood. Contralateral heating increased deep venous oxygen saturation and abolished the pronounced glucose-induced increase in oxygen consumption observed in the control experiments after glucose. Heating increased rectal temperature by 0.6 degrees C, and plasma norepinephrine levels were increased compared with the control experiments. The present study explains the conflicting reports on glucose-induced thermogenesis in skeletal muscle and warns against heating the contralateral hand when using the forearm technique.


2003 ◽  
Vol 88 (10) ◽  
pp. 4559-4564 ◽  
Author(s):  
Soffia Gudbjörnsdóttir ◽  
Mikaela Sjöstrand ◽  
Lena Strindberg ◽  
John Wahren ◽  
Peter Lönnroth

Abstract To elucidate mechanisms regulating capillary transport of insulin and glucose, we directly calculated the permeability surface (PS) area product for glucose and insulin in muscle. Intramuscular microdialysis in combination with the forearm model and blood flow measurements was performed in healthy males, studied during an oral glucose tolerance test or during a one-step or two-step euglycemic hyperinsulinemic clamp. PS for glucose increased significantly from 0.29 ± 0.1 to 0.64 ± 0.2 ml/min·100 g after oral glucose tolerance test, and glucose uptake increased from 1.2 ± 0.4 to 2.6 ± 0.6 μmol/min·100 g (P &lt; 0.05). During one-step hyperinsulinemic clamp (plasma insulin, 1.962 pmol/liter), PS for glucose increased from 0.2 ± 0.1 to 2.3 ± 0.9 ml/min·100 g (P &lt; 0.05), and glucose uptake increased from 0.6 ± 0.2 to 5.0 ± 1.4 μmol/min·100 g (P &lt; 0.05). During the two-step clamp (plasma insulin, 1380 ± 408 and 3846 ± 348 pmol/liter), the arterial-interstitial difference and PS for insulin were constant. The PS for glucose tended to increase (P = not significant), whereas skeletal muscle blood flow increased from 4.4 ± 0.7 to 6.2 ± 0.8 ml/min·100 ml (P &lt; 0.05). The present data show that PS for glucose is markedly increased by oral glucose, whereas a further vasodilation exerted by high insulin concentrations may not be physiologically relevant for capillary delivery of either glucose or insulin in resting muscle.


Author(s):  
Cécile Bétry ◽  
Aline V. Nixon ◽  
Paul L. Greenhaff ◽  
Elizabeth J. Simpson

Abstract Introduction Skeletal muscle is a major site for whole-body glucose disposal, and determination of skeletal muscle glucose uptake is an important metabolic measurement, particularly in research focussed on interventions that impact muscle insulin sensitivity. Calculating arterial-venous difference in blood glucose can be used as an indirect measure for assessing glucose uptake. However, the possibility of multiple tissues contributing to the composition of venous blood, and the differential in glucose uptake kinetics between tissue types, suggests that sampling from different vein sites could influence the estimation of glucose uptake. This study aimed to determine the impact of venous cannula position on calculated forearm glucose uptake following an oral glucose challenge in resting and post-exercise states. Materials and Methods In 9 young, lean, males, the impact of sampling blood from two antecubital vein positions; the perforating vein (‘perforating’ visit) and, at the bifurcation of superficial and perforating veins (‘bifurcation’ visit), was assessed. Brachial artery blood flow and arterialised-venous and venous blood glucose concentrations were measured in 3 physiological states; resting-fasted, resting-fed, and fed following intermittent forearm muscle contraction (fed-exercise). Results Following glucose ingestion, forearm glucose uptake area under the curve was greater for the ‘perforating’ than for the ‘bifurcation’ visit in the resting-fed (5.92±1.56 vs. 3.69±1.35 mmol/60 min, P<0.01) and fed-exercise (17.38±7.73 vs. 11.40±7.31 mmol/75 min, P<0.05) states. Discussion Antecubital vein cannula position impacts calculated postprandial forearm glucose uptake. These findings have implications for longitudinal intervention studies where serial determination of forearm glucose uptake is required.


1990 ◽  
Vol 259 (5) ◽  
pp. E639-E643 ◽  
Author(s):  
I. W. Gallen ◽  
I. A. Macdonald

Two methods of hand heating [warmed blanket 40 degrees C (WB) and warm-air box 55 degrees C (WA)] were compared with the effect of no heating (control) in six healthy females. After 30 min baseline, the left hand was either heated for 1 h or not heated. Measurements were made of skin temperature (ST), core temperature (CT), right forearm (FBF) and skin blood flow (SBF), and right forearm deep venous blood oxygen content with and without occlusion of the hand circulation. CT rose above baseline in WB (by +0.2 degrees C, P less than 0.01) but not with control or WA. Abdominal ST rose only with WB (by +0.66 degrees C above baseline, P less than 0.01). FBF increased above baseline values with both WA (by +10 ml.l forearm-1.min-1) and WB (by +12 ml.l forearm-1.min-1), but neither was significantly greater than the control. SBF increased above baseline only with WB (by +202 mV, P less than 0.01), and this was significantly greater than control SBF. With an occluded hand circulation, deep venous oxygen content rose above baseline values with WB only (+6.0%, P less than 0.01) but was not greater than control with either method of hand heating. We conclude that using a warm-air box has less effect than a heated blanket on the measured variables.


1994 ◽  
Vol 76 (3) ◽  
pp. 1388-1393 ◽  
Author(s):  
R. A. De Blasi ◽  
M. Ferrari ◽  
A. Natali ◽  
G. Conti ◽  
A. Mega ◽  
...  

We applied near-infrared spectroscopy (NIRS) for the simultaneous measurement of forearm blood flow (FBF) and oxygen consumption (VO2) in the human by inducing a 50-mmHg venous occlusion. Eleven healthy subjects were studied both at rest and after hand exercise during vascular occlusion. FBF was also measured by strain-gauge plethysmography. FBF measured by NIRS was 1.9 +/- 0.8 ml.100 ml-1.min-1 at rest and 8.2 +/- 2.9 ml.100 ml-1.min-1 after hand exercise. These values showed a correlation (r = 0.94) with those obtained by the plethysmography. VO2 values were 4.6 +/- 1.3 microM O2 x 100 ml-1.min-1 at rest and 24.9 +/- 11.2 microM O2 x 100 ml-1.min-1 after hand exercise. The scatter of the FBF and VO2 values showed a good correlation between the two variables (r = 0.93). The results demonstrate that NIRS provides the particular advantage of obtaining the contemporary evaluation of blood flow and VO2, allowing correlation of these two variables by a single maneuver without discomfort for the subject.


1976 ◽  
Vol 230 (1) ◽  
pp. 56-60 ◽  
Author(s):  
J Louis-Sylvestre

Peripheral blood glucose and immunologically reactive insulin levels were determined in freely moving normal rats which were submitted either to a free oral glucose load or to a gastric administration of the glucose load. Identical determinations were performed in ventromedial hypothalamic nucleus-(VMH) lesioned and vagotomized rats after the same oral intake. It was demonstrated that: 1) a free oral glucose intake was immediately followed by two peaks of insulun release and a resultant decrease in blood glucose; 2) a gastric glucose load resulted in a single peak of insulin release and the concomitant decline in blood glucose; 3) the recorded blood glucose level was the resultant of the insulin-induced hypoglycemia and the postabsorptive hyperglycemia; and 4) the responses were largely exaggerated in VMH-lesioned rats and abolished by vagotomy. It is concluded that the early prandial insulin release reflexly induced by food-related stimuli temporarily enhances the metabolic conditions which provoke feeding.


1998 ◽  
Vol 85 (1) ◽  
pp. 154-159 ◽  
Author(s):  
Jason W. Daniels ◽  
Paul A. Molé ◽  
James D. Shaffrath ◽  
Charles L. Stebbins

This study examined the acute effects of caffeine on the cardiovascular system during dynamic leg exercise. Ten trained, caffeine-naive cyclists (7 women and 3 men) were studied at rest and during bicycle ergometry before and after the ingestion of 6 mg/kg caffeine or 6 mg/kg fructose (placebo) with 250 ml of water. After consumption of caffeine or placebo, subjects either rested for 100 min (rest protocol) or rested for 45 min followed by 55 min of cycle ergometry at 65% of maximal oxygen consumption (exercise protocol). Measurement of mean arterial pressure (MAP), forearm blood flow (FBF), heart rate, skin temperature, and rectal temperature and calculation of forearm vascular conductance (FVC) were made at baseline and at 20-min intervals. Plasma ANG II was measured at baseline and at 60 min postingestion in the two exercise protocols. Before exercise, caffeine increased both systolic blood pressure (17%) and MAP (11%) without affecting FBF or FVC. During dynamic exercise, caffeine attenuated the increase in FBF (53%) and FVC (50%) and accentuated exercise-induced increases in ANG II (44%). Systolic blood pressure and MAP were also higher during exercise plus caffeine; however, these increases were secondary to the effects of caffeine on resting blood pressure. No significant differences were observed in heart rate, skin temperature, or rectal temperature. These findings indicate that caffeine can alter the cardiovascular response to dynamic exercise in a manner that may modify regional blood flow and conductance.


1993 ◽  
Vol 265 (1) ◽  
pp. H171-H175 ◽  
Author(s):  
J. R. Wilson ◽  
S. C. Kapoor

It has been postulated that endothelial release of prostaglandins contributes to exercise-induced vasodilation of skeletal muscle arterioles. To test this hypothesis, 12 normal subjects underwent brachial arterial and venous catheter insertion and instrumentation of their forearm to measure plethysmographic forearm blood flow. Forearm blood flow and arterial and venous 6-ketoprostaglandin F1 alpha (PGF1 alpha) and prostaglandin E2 (PGE2) were then measured during two levels of wrist flexion exercise (0.2 and 0.4 W). In nine of the subjects, exercise was repeated after intra-arterial infusion of indomethacin (0.3 mg/100 ml forearm vol). Exercise increased forearm blood flow (2.0 +/- 0.2 to 12.1 +/- 1.1 ml.min-1.100 ml-1) and forearm release of PGF1 alpha (162 +/- 28 to 766 +/- 193 pg.min-1.100 ml-1) and PGE2 (26 +/- 6 to 125 +/- 46 pg.min-1.100 ml-1) (all P < 0.05). Indomethacin virtually abolished forearm prostaglandin release and reduced forearm blood flow at rest (2.2 +/- 0.2 to 1.7 +/- 0.2 ml.min-1.100 ml-1), at 0.2 W (6.3 +/- 0.7 to 5.4 +/- 0.7 ml.min-1.100 ml-1), and at 0.4 W (12.2 +/- 1.5 to 10.3 +/- 1.3 ml.min-1.100 ml-1) (all P < 0.02). These data suggest that release of vasodilatory prostaglandins contributes to exercise-induced arteriolar vasodilation and hyperemia in skeletal muscle.


Sign in / Sign up

Export Citation Format

Share Document