Comparison of theoretical and experimental results obtained in the study of thermal stresses in three-layer composite plates

1982 ◽  
Vol 17 (5) ◽  
pp. 520-524
Author(s):  
N. N. Blumberg ◽  
P. I. Petrov ◽  
A. R. Fraiman
2004 ◽  
Vol 82 (7-8) ◽  
pp. 627-637 ◽  
Author(s):  
L.H. Yam ◽  
Z. Wei ◽  
L. Cheng ◽  
W.O. Wong

Author(s):  
Victor M. Ryabov ◽  
◽  
Boris A. Yartsev ◽  
Ludmila V. Parshina ◽  
◽  
...  

2010 ◽  
Vol 443 ◽  
pp. 614-619 ◽  
Author(s):  
Xin Ping Zhang ◽  
Ming Jen Tan ◽  
Ting Hui Yang ◽  
Jing Tao Wang

Rolling of Al-Mg-Al tri-layer composite material fabricated by the explosion cladding method was simulated using finite element methods. The rolling temperature was determined based on the flow stresses of AZ31 magnesium alloy and 7075 Al alloy at elevated temperature. The strain distribution in the plates during rolling and effects of the reduction ratio on the separation in the Al/Mg/Al laminate were studied. The simulation agrees with experimental results.


1992 ◽  
Vol 45 (10) ◽  
pp. 419-446 ◽  
Author(s):  
Ahmed K. Noor ◽  
W. Scott Burton

The focus of this review is on the hierarchy of composite models, predictor-corrector procedures, the effect of temperature-dependence of material properties on the response, and the sensitivity of the thermomechanical response to variations in material parameters. The literature reviewed is devoted to the following eight application areas: Heat transfer; thermal stresses; curing, processing and residual stresses; bifurcation buckling; vibrations of heated plates and shells; large deflection and postbuckling problems; and sandwich plates and shells. Extensive numerical results are presented showing the effects of variation in the lamination and geometric parameters of temperature-sensitive angle-ply composite plates on the accuracy of thermal buckling response, and the sensitivity derivatives predicted by nine different modeling approaches (based on two-dimensional theories). The standard of comparison is taken to be the exact three-dimensional thermoelasticity solutions. Some future directions for research on the modeling of high-temperature multilayered composites are outlined.


2014 ◽  
Vol 21 (3) ◽  
pp. 401-404
Author(s):  
Dalal A. Maturi ◽  
Antonio J.M. Ferreira ◽  
Ashraf M. Zenkour ◽  
Daoud S. Mashat

AbstractIn this paper, we combine a new higher-order layerwise formulation and collocation with radial basis functions for predicting the static deformations and free vibration behavior of three-layer composite plates. The skins are modeled via a first-order theory, while the core is modeled by a cubic expansion with the thickness coordinate. Through numerical experiments, the numerical accuracy of this strong-form technique for static and vibration problems is discussed.


2010 ◽  
Vol 118-120 ◽  
pp. 241-245 ◽  
Author(s):  
Liu Ding Chen ◽  
Xiao Yan Tong ◽  
Xiang Zheng ◽  
Lei Jiang Yao

Based on progressive damage theory, a 3D laminated model with an orthotropic property in plane was established to simulate the response of plain weave carbon fiber reinforced silicon carbide(C/SiC) ceramic matrix composites(CMC) under low velocity impact(LVI). Intra-layer damage and inter-layer damage were taken into account, respectively. Three scalar damage variables, associated with the degradation of warp modulus, weft modulus and shear modulus, respectively, were proposed to characterize intra-layer damage evolutions. The intra-layer constitutive model was implemented into MSC.Dytran, via its user subroutine EXFAIL1. The potential delamination region was considered as a discrete cohesive zone. Three vector spring elements were placed into every two adjacent nodes to simulate the inter-layer joints. A scalar damage variables, associated with the degradation of the three vector spring elements, were brought forward to characterize the inter-layer damage evolutions. The inter-layer constitutive model was implemented into MSC.Dytran, via its user subroutine EXELAS. Damage area, indentation depth of C/SiC composite plates and time history of impact force were obtained to compare with experimental results. The numerical results show overall good agreement with experimental results.


Author(s):  
Masoud Alimardani ◽  
Ehsan Toyserkani ◽  
Jan Paul Huissoon

This paper presents a numerical-experimental investigation on the effects of preheating the substrate on the potential delamination and crack formation across the parts fabricated using the Laser Solid Freeform Fabrication (LSFF) process. For this purpose, the temperature distributions and stress fields induced during the multilayer LSFF process, and their correlation with the delamination and crack formation are studied throughout the numerical analysis and the experimental fabrication of a four-layer thin wall of SS304L. A 3D time-dependent numerical approach is used to simulate the LSFF process, and also interpret the experimental results in terms of the temperature distribution and the thermal stress fields. The numerical results show that by preheating the substrate prior to the fabrication process, the thermal stresses throughout the process domain substantially reduce. Accordingly, this can result in the reduction of potential micro-cracks formation across the fabricated part. Preheating also decreases the transient time for the development of a proper melt pool which is an important factor to prevent poor bonding between deposited layers. The experimental results are used to verify the numerical findings as well as the feasibility of preheating on the reduction of the micro-cracks formed throughout the fabrication process.


1994 ◽  
Vol 16 (4) ◽  
pp. 1-10
Author(s):  
Dao Huy Bich

Using the homogenization method problems of nonhomogeneous and anisotropic elastic layer composite plates reduce to the problems of homogeneous and anisotropic elastic plates. The formulae of effective modulus theory determining material behaviors in this cases are given and can be checked by experimental data. Obtained results allow to analyze static and dynamic problems of composite plates by well - know methods.


Sign in / Sign up

Export Citation Format

Share Document