Isothermal Rolling of Mg-Based Laminated Composites Made by Explosion Cladding

2010 ◽  
Vol 443 ◽  
pp. 614-619 ◽  
Author(s):  
Xin Ping Zhang ◽  
Ming Jen Tan ◽  
Ting Hui Yang ◽  
Jing Tao Wang

Rolling of Al-Mg-Al tri-layer composite material fabricated by the explosion cladding method was simulated using finite element methods. The rolling temperature was determined based on the flow stresses of AZ31 magnesium alloy and 7075 Al alloy at elevated temperature. The strain distribution in the plates during rolling and effects of the reduction ratio on the separation in the Al/Mg/Al laminate were studied. The simulation agrees with experimental results.

2016 ◽  
Vol 61 (2) ◽  
pp. 1003-1008 ◽  
Author(s):  
A. Dziubińska ◽  
A. Gontarz ◽  
K. Dziedzic

AbstractThe paper reports a selection of numerical and experimental results of a new closed-die forging method for producing AZ31 magnesium alloy aircraft brackets with one rib. The numerical modelling of the new forming process was performed by the finite element method.The distributions of stresses, strains, temperature and forces were examined. The numerical results confirmed that the forgings produced by the new forming method are correct. For this reason, the new forming process was verified experimentally. The experimental results showed good agreement with the numerical results. The produced forgings of AZ31 magnesium alloy aircraft brackets with one rib were then subjected to qualitative tests.


2010 ◽  
Vol 154-155 ◽  
pp. 1826-1829 ◽  
Author(s):  
Fuh Kuo Chen ◽  
Chih Kun Chang

The stamping process for manufacturing cell phone cases with magnesium alloy AZ31 sheets was studied using both the experimental approach and the finite element analysis. The formability of AZ31 magnesium-alloy sheet at elevated temperatures was studied first. The experimental results reveal that the forming of AZ31 sheets becomes possible as long as the sheet is heated to an elevated temperature and 200oC is an optimum forming temperature to start with. An optimum stamping process, including die geometry, forming temperature, and blank dimension, for manufacturing the cell phone cases was examined by the finite element analysis. The finite element analyses performed for the cell phone were validated by the good agreement between the simulation results and the experimental data. It also confirms that the cell phone cases can be produced with AZ31 magnesium-alloy sheets at elevated temperature by the stamping process. It provides an alternative to the electronics industry in the application of magnesium alloys.


2014 ◽  
Vol 609-610 ◽  
pp. 495-499
Author(s):  
Guo Cheng Ren ◽  
Xiao Juan Lin ◽  
Shu Bo Xu

The microstructure and material properties of AZ31 magnesium alloy are very sensitive to process parameters, which directly determine the service properties. To explore and understand the deformation behavior and the optimization of the deformation process, the microstructure evolution during equal channel angular pressing was predicted by using the DEFORM-3D software package at different temperature. To verify the finite element simulation results, the microstructure across the transverse direction of the billet was measured. The results show that the effects strain and deformation temperatures on the microstructure evolution of AZ31 magnesium during ECAP process are significant, and a good agreement between the predicted and experimental results was obtained, which confirmed that the derived dynamic recrystallization mathematical models can be successfully incorporated into the finite element model to predict the microstructure evolution of ECAP process for AZ31 magnesium.


Author(s):  
Hesam Askari ◽  
John P. Young ◽  
David P. Field ◽  
Ghassan Kridli ◽  
Hussein M. Zbib

2010 ◽  
Vol 654-656 ◽  
pp. 739-742 ◽  
Author(s):  
Kenichi Manabe ◽  
Toshiji Morishima ◽  
Yu Ogawa ◽  
Kazuo Tada ◽  
Tsutomu Murai ◽  
...  

In this study, non-uniform heating approach in warm T-joint forming process is attempted for the AZ31 magnesium alloy tube. For this purpose, finite element simulation is performed to analyze the appropriate temperature distribution. The validity of the finite element(FE) model of T-joint tube hydroforming(THF) is verified by comparing the FE simulation and experimental results. Using this FE model, appropriate temperature distribution was suggested. In addition, it was showed that the wall thickness could be more uniform by optimizing the temperature condition.


2008 ◽  
Vol 141-143 ◽  
pp. 671-676
Author(s):  
Song Yang Zhang ◽  
Mao Peng Geng ◽  
Shui Sheng Xie

The temperature fields during semi-solid magnesium alloy produced by casting-rolling technology has been simulated by finite element method on the basis of ANSYS. The temperature fields for different conditions were obtained, which is consistent with the experimental results. Results show that there is a high temperature field in the casting and rolling zone. The temperature fluctuates from the center to edge of the strip near the entry of the casting and rolling zone. but The temperature decreases gradually from the center to edge of the strip near the exit of the casting and rolling zone. There are some remarkable effects of the temperature of the casting and rolling, the velocity of the casting and rolling, the gap of two roll, the cooling of the roll and the diameter of the roll on the temperature field, which are in agreement with the experimental results.


2016 ◽  
Vol 850 ◽  
pp. 281-286
Author(s):  
Yi Wen Xia ◽  
Bi You Peng ◽  
Chao Zhou ◽  
Ren Yuan Pan ◽  
Shi Xiong Chen

In this study, the deformation process of AZ31 magnesium alloy during equal channel angular pressing (ECAP) was simulated using the commercial software Deform-3D under different extrusion condition (passes and temperatures). To investigate the effect of temperature and deformation rate on grain refinement, the rules of flow and deformation homogeneity and also the extrusion load during ECAP was discussed. The simulation results indicate that the AZ31 magnesium alloy obtain homogenous and larger strain magnitude after 4 passes ECAP at 250°C~275°C. To verify the 3D finite element simulation results, the microstructure in the cross-section was observed. It shows that the grain of AZ31 magnesium alloy is homogenous refined by finite element method (FEM) results, thus the mechanical property is improved.


Sign in / Sign up

Export Citation Format

Share Document