Nonadiabatic corrections in nonempirical calculations of molecular oscillation frequencies

1991 ◽  
Vol 55 (6) ◽  
pp. 1229-1233
Author(s):  
V. I. Pupyshev ◽  
Yu. N. Panchenko
Genetics ◽  
2000 ◽  
Vol 156 (2) ◽  
pp. 665-675
Author(s):  
Adrian Rothenfluh ◽  
Marla Abodeely ◽  
Jeffrey L Price ◽  
Michael W Young

Abstract In genetic screens for Drosophila mutations affecting circadian locomotion rhythms, we have isolated six new alleles of the timeless (tim) gene. Two of these mutations cause short-period rhythms of 21–22 hr in constant darkness, and four result in long-period cycles of 26–28 hr. All alleles are semidominant. Studies of the genetic interactions of some of the tim alleles with period-altering period (per) mutations indicate that these interactions are close to multiplicative; a given allele changes the period length of the genetic background by a fixed percentage, rather than by a fixed number of hours. The timL1 allele was studied in molecular detail. The long behavioral period of timL1 is reflected in a lengthened molecular oscillation of per and tim RNA and protein levels. The lengthened period is partly caused by delayed nuclear translocation of TIML1 protein, shown directly by immunocytochemistry and indirectly by an analysis of the phase response curve of timL1 flies.


2013 ◽  
Vol 109 (10) ◽  
pp. 2505-2516 ◽  
Author(s):  
Fu-Zen Shaw ◽  
Yi-Fang Liao ◽  
Ruei-Feng Chen ◽  
Yu-Hsing Huang ◽  
Rick C. S. Lin

The contribution of the zona incerta (ZI) of the thalamus on spike-wave discharges (SWDs) was investigated. Chronic recordings of bilateral cortices, bilateral vibrissa muscle, and unilateral ZI were performed in Long-Evans rats to examine the functional role of SWDs. Rhythmic ZI activity appeared at the beginning of SWD and was accompanied by higher-oscillation frequencies and larger spike magnitudes. Bilateral lidocaine injections into the mystacial pads led to a decreased oscillation frequency of SWDs, but the phenomenon of ZI-related spike magnitude enhancement was preserved. Moreover, 800-Hz ZI microstimulation terminates most of the SWDs and whisker twitching (WT; >80%). In contrast, 200-Hz ZI microstimulation selectively stops WTs but not SWDs. Stimulation of the thalamic ventroposteriomedial nucleus showed no obvious effect on terminating SWDs. A unilateral ZI lesion resulted in a significant reduction of 7- to 12-Hz power of both the ipsilateral cortical and contralateral vibrissae muscle activities during SWDs. Intraincertal microinfusion of muscimol showed a significant inhibition on SWDs. Our present data suggest that the ZI actively modulates the SWD magnitude and WT behavior.


1996 ◽  
Vol 45 (12) ◽  
pp. 2737-2740
Author(s):  
M. Yu. Balakina ◽  
O. D. Fominykh ◽  
I. D. Morozova ◽  
D. Ya. Osokin

Author(s):  
Thomas Kinsey ◽  
Guy Dumas

A new concept of hydrokinetic turbine using oscillating hydrofoils to extract energy from water currents (tidal or gravitational) is presented, tested and analyzed in the present investigation. Due to its rectangular extraction plane, this technology is particularly well suited for river beds and shallow waters near the coasts. The present turbine is a 2 kW prototype, composed of two rectangular oscillating hydrofoils of aspect ratio 7 in a tandem spatial configuration. The pitching motion of each hydrofoil is coupled to their cyclic heaving motion through four-link mechanisms which effectively yield a one-degree-of-freedom system driving a speed-controlled electric generator. The turbine has been mounted on a custom-made pontoon boat and dragged on a lake at different velocities. Instantaneous extracted power has been measured and cycle-averaged for several water flow velocities and hydrofoil oscillation frequencies. Results are demonstrated to be self-consistent and validate our extensive 2D flow simulation database. The present data show optimal performances of the oscillating hydrofoils concept at a reduced frequency of about 0.12, at which condition the measured power extraction efficiency reaches 40% once the overall losses in the mechanical system are taken into account. Further measurements of power extraction with a single oscillating hydrofoil have also been performed by taking out the downstream hydrofoil of the tandem pair. Those measurements favorably compare, quantitatively, with available 3D CFD predictions. The 40% hydrodynamic efficiency of this first prototype exceeds expectation and reaches levels comparable to the best performances achievable with modern rotor-blades turbines. It thus demonstrates the promising potential of the oscillating hydrofoils technology to efficiently extract power from an incoming water flow.


1994 ◽  
Vol 116 (3) ◽  
pp. 627-632 ◽  
Author(s):  
Y. Kamotani ◽  
F.-B. Weng ◽  
S. Ostrach ◽  
J. Platt

An experimental study is made of natural convection oscillations in gallium melts enclosed by right circular cylinders with differentially heated end walls. Cases heated from below are examined for angles of inclination (φ) ranging from 0 deg (vertical) to 75 deg with aspect ratios Ar (height/diameter) of 2, 3, and 4. Temperature measurements are made along the circumference of the cylinder to detect the oscillations, from which the oscillatory flow structures are inferred. The critical Rayleigh numbers and oscillation frequencies are determined. For Ar=3 and φ = 0 deg, 30 deg the supercritical flow structures are discussed in detail.


Author(s):  
Ramin M. H. Khorasany ◽  
Stanley G. Hutton

In this paper, the effect of geometrical nonlinear terms, caused by a space fixed point force, on the frequencies of oscillations of a rotating disk with clamped-free boundary conditions is investigated. The nonlinear geometrical equations of motion are based on Von Karman plate theory. Using the eigenfunctions of a stationary disk as approximating functions in Galerkin’s method, the equations of motion are transformed into a set of coupled nonlinear Ordinary Differential Equations (ODEs). These equations are then used to find the equilibrium positions of the disk at different discrete blade speeds. At any given speed, the governing equations are linearized about the equilibrium solution of the disk under the application of a space fixed external force. These linearized equations are then used to find the oscillation frequencies of the disk considering the effect of large deformation. Using multi mode approximation and different levels of nonlinearity, the frequency response of the disk considering the effect of geometrical nonlinear terms are studied. It is found that at the linear critical speed, the nonlinear frequency of the corresponding mode is not zero. Results are presented that illustrate the effect of the magnitude of disk displacement upon the frequency response characteristics. It is also found that for each mode, including the effect of the geometrical nonlinear terms due to the applied load causes a separation in the frequency responses of its backward and forward traveling waves when the disk is stationary. This effect is similar to the effect of a space fixed constraint in the linear problem. In order to verify the numerical results, experiments are conducted and the results are presented.


Sign in / Sign up

Export Citation Format

Share Document