Spectral extinction coefficient of vapor of heatproof material destroyed by a high-temperature flux of air plasma

1980 ◽  
Vol 38 (1) ◽  
pp. 59-61 ◽  
Author(s):  
�. B. Georg ◽  
M. I. Yakushin
Author(s):  
Gaosheng Wei ◽  
Yusong Liu ◽  
Xinxin Zhang ◽  
Xiaoze Du

This paper engages in experimental measurements on thermal radiative transfer in silica aerogel and its composite insulation materials (xonotlite-aerogel composite and ceramic fibre-aerogel composite). The samples of silica aerogel, xonotlite-type calcium silicate, and ceramic fibre insulation materials are all considered as a semi-transparent medium capable of absorbing, emitting and scattering thermal radiation. The spectral transmittances are then measured at different infrared wavelengths ranging from 2.5 to 25μm with a Fourier transform infrared spectrometer (FTIR), and subsequently used to determine the specific spectral extinction coefficient and the specific Rossland mean extinction coefficient of the sample. The radiative conductivities deduced from the overall thermal conductivities measured with the transient hot-strip (THS) method are compared with the predictions from the diffusion approximation by using the measured spectral extinction coefficient. The results show that the spectral extinction coefficients of the samples are strongly dependent on the wavelength, particularly in the short wavelength regime (<10μm). The total Rossland mean extinction coefficients of the samples are all decreasing with the temperature increasing. The radiative conductivities are found almost proportional to the cubic temperature, and decreases as the sample density increases.


Author(s):  
P Subramani ◽  
M Sathishkumar ◽  
M Manikandan ◽  
S Senthil Kumaran ◽  
V Sreenivasulu ◽  
...  

Abstract Thermal barrier coating plays a vital role in protecting materials' surfaces from high-temperature environment conditions. This work compares the demeanour of uncoated and air plasma sprayed Cr3C2-25NiCr and NiCrMoNb coated X8CrNiMoVNb16-13 substrates subjected to air oxidation and molten salt (Na2SO4 + 60%V2O5) environment condition at 900°C for 50 cycles. Coating characteristics have been analyzed through microstructure, thickness, porosity, hardness, and bond strength. SEM, EDS and XRD analysis were used to analyze corrosion's product at the end of the 50th cycle. Coating microstructures showed a uniform laminar structure that is adherent and denser with a coating thickness of 150 ± 20 μm and porosity less than 3.5%. The Microhardness of both the coated substrates were higher than that of the bare substrate. Cr3C2-25NiCr and NiCrMoNb coating bond strength was 38.9 MPa and 42.5 MPa. Thermogravimetric analysis showed the parabolic rate law of oxidation for all the substrates in both environments. In the molten salt environment, all the substrates exhibited higher weight gain compared to the air oxidation environment. In both environmental conditions, the uncoated X8CrNiMoVNb16-13 alloy exhibited higher weight gain than the coated substrates. The formation of Cr2O3, NiO and spinel oxide NiCr2O4 offers good resistance to corrosion to all the substrates in both the environmental condition. However, the presence of Mo and Nb significantly accelerated the corrosion of the substrate, thereby increasing the weight of the NiCrMoNb substrate. It is observed that Cr3C2-25NiCr and NiCrMoNb coating over the X8CrNiMoVNb16-13 substrate significantly protected the substrate against the hot corrosion than the bare alloy exposed to similar environmental conditions.


2021 ◽  
Author(s):  
P. K. Dubois ◽  
A. Gauvin-Verville ◽  
B. Picard ◽  
J.-S. Plante ◽  
M. Picard

Abstract Recuperated, high-temperature microturbines (&lt; 1 MW) could be a key enabler for hybrid powertrains of tomorrow’s small aircraft. To achieve competitive thermal efficiencies, turbine inlet temperature (TIT) must increase to 1550 K, well beyond conventional metallic microturbine limits. This calls for high-temperature refractory ceramics, which call for a new ceramic-specific, microturbine design like the Inside-Out Ceramic Turbine (ICT). This study focuses on the applicability of a refractory thermal barrier coating (TBC) to the internal surface of the ICT cooling ring. By cutting the heat transfer from the main flow to the structural rim-rotor, the use of a refractory TBC coating in an ICT enables higher TIT and lower cooling air mass flow. A preliminary experimental assessment is done at room temperature on 1 mm-thick coatings of 8% yttria-stabilized zirconia (8YSZ), air plasma sprayed (APS) TBC, applied to Inconel 718 and Ti64 test coupons. Results show that the strongly orthotropic behaviour of the tested TBC fits perfectly with the deformation mechanics of the ICT configuration under load. First, large in-plane strain tolerance allows the large tangential deformation imposed by the structural shroud under centrifugal loading. Second, high out-of-plane stiffness and compressive resistance combine to support extreme compressive loads with no apparent damage to the TBC even at more than 3 times blade indentation average loading. An experimental demonstration on a small-scale prototype shows a reduction of 40% in cooling flow in a, 8-minute ICT test, with no damage to the TBC, proving the effectiveness and potential of the proposed TBC design.


1982 ◽  
Vol 95 (3) ◽  
pp. 245-254 ◽  
Author(s):  
A.R. Nicoll ◽  
W. Kleemann ◽  
R. Engel

Sign in / Sign up

Export Citation Format

Share Document