Evidence of global-scale waves with zonal wave number zero in the stratosphere

1978 ◽  
Vol 116 (1) ◽  
pp. 8-31 ◽  
Author(s):  
A. Ebel ◽  
A. Ghazi ◽  
W. B�tz
2003 ◽  
Vol 21 (7) ◽  
pp. 1577-1588 ◽  
Author(s):  
D. Altadill ◽  
E. M. Apostolov ◽  
Ch. Jacobi ◽  
N. J. Mitchell

Abstract. Analyses of time-spatial variations of critical plasma frequency foF2 during the summer of 1998 reveal the existence of an oscillation activity with attributes of a 6-day westward propagating wave. This event manifests itself as a global scale wave in the foF2 of the Northern Hemisphere, having a zonal wave number 2. This event coincides with a 6-day oscillation activity in the meridional neutral winds of the mesosphere/lower thermosphere (MLT). The oscillation in neutral winds seems to be linked to the 6–7-day global scale unstable mode westward propagating wave number 1 in the MLT. The forcing mechanisms of the 6-day wave event in the ionosphere from the wave activity in the MLT are discussed.Key words. Ionosphere (Ionosphere-Atmosphere interactions; Mid-latitude Ionosphere) – Meterology and atmospheric dynamics (waves and tides)


2021 ◽  
Vol 73 (1) ◽  
Author(s):  
Chunming Huang ◽  
Wei Li ◽  
Shaodong Zhang ◽  
Gang Chen ◽  
Kaiming Huang ◽  
...  

AbstractThe eastward- and westward-traveling 10-day waves with zonal wavenumbers up to 6 from surface to the middle mesosphere during the recent 12 years from 2007 to 2018 are deduced from MERRA-2 data. On the basis of climatology study, the westward-propagating wave with zonal wave number 1 (W1) and eastward-propagating waves with zonal wave numbers 1 (E1) and 2 (E2) are identified as the dominant traveling ones. They are all active at mid- and high-latitudes above the troposphere and display notable month-to-month variations. The W1 and E2 waves are strong in the NH from December to March and in the SH from June to October, respectively, while the E1 wave is active in the SH from August to October and also in the NH from December to February. Further case study on E1 and E2 waves shows that their latitude–altitude structures are dependent on the transmission condition of the background atmosphere. The presence of these two waves in the stratosphere and mesosphere might have originated from the downward-propagating wave excited in the mesosphere by the mean flow instability, the upward-propagating wave from the troposphere, and/or in situ excited wave in the stratosphere. The two eastward waves can exert strong zonal forcing on the mean flow in the stratosphere and mesosphere in specific periods. Compared with E2 wave, the dramatic forcing from the E1 waves is located in the poleward regions.


2021 ◽  
Author(s):  
Michal Kozubek ◽  
Peter Krizan

<p>An exceptionally strong sudden stratospheric warming (SSW) in the Southern Hemisphere (SH) during September 2019 was observed. Because SSW in the SH is very rare, comparison with the only recorded major SH SSW is done. According to World Meteorological Organization (WMO) definition, the SSW in 2019 has to be classified as minor. The cause of SSW in 2002 was very strong activity of stationary planetary wave with zonal wave-number (ZW) 2, which reached its maximum when the polar vortex split into two circulations with polar temperature enhancement by 30 K/week and it penetrated deeply to the lower stratosphere and upper troposphere. On the other hand, the minor SSW in 2019 involved an exceptionally strong wave-1 planetary wave and a large polar temperature enhancement by 50.8 K/week, but it affected mainly the middle and upper stratosphere. The strongest SSW in the Northern Hemisphere was observed in 2009. This study provides comparison of two strongest SSW in the SH and the strongest SSW in the NH to show difference between two hemispheres and possible impact to the lower or higher layers.</p>


Sensors ◽  
2020 ◽  
Vol 20 (3) ◽  
pp. 708 ◽  
Author(s):  
Liang Huang ◽  
Yi Liu ◽  
Qiong Tang ◽  
Guanyi Chen ◽  
Zhuangkai Wang ◽  
...  

By using multi-satellite observations of the L1 signal-to-noise ratio (SNR) from the Cyclone Global Navigation Satellite System (CYGNSS) taken in 2017, we present the occurrence of nighttime topside ionospheric irregularities in low-latitude and equatorial regions. The most significant finding of this study is the existence of longitudinal structures with a wavenumber 4 pattern in the topside irregularities. This suggests that lower atmospheric waves, especially a daytime diurnal eastward-propagating zonal wave number-3 nonmigrating tide (DE3), might play an important role in the generation of topside plasma bubbles during the low solar minimum. Observations of scintillation events indicate that the maximum occurrence of nighttime topside ionospheric irregularities occurs on the magnetic equator during the equinoxes. The current work, which could be regarded as an important update of the previous investigations, would be readily for the further global analysis of the topside ionospheric irregularities.


2007 ◽  
Vol 25 (8) ◽  
pp. 1767-1778 ◽  
Author(s):  
S. B. Malinga ◽  
J. M. Ruohoniemi

Abstract. Data from the Super Dual Radar Network (SuperDARN) radars for 2002 were used to study the behaviour of the quasi-two-day wave (QTDW) in the Northern Hemisphere auroral zone. The period of the QTDW is observed to vary in the range of ~42–56 h, with the most dominant period being ~48 h and secondary peaks at ~42- and ~52-h. The spectral power shows a seasonal variation with a peak power (max~70) in summer. The power shows variations of several days and there is also evidence of changes in wave strength with longitude. The 42-h and the 48-h components tend to be strongly correlated in summer. The onset of enhanced wave activity tends to coincide with the westward acceleration of the zonal mean flow and occurs at a time of strong southward meridional flow. The most frequent instantaneous hourly period is in the 40 to 50 h period band, in line with the simultaneous dominance of the 42-h and the 48-h components. The wave numbers are less variable and are around −2 to −4 during times of strong wave activity. For a period of ~48 h, the zonal wave number is about −3 to −4, using a negative value to indicate westward propagating waves. The 42-h and the 52-h components cover a wider band in the −4 to 1 range. The wide zonal wave number spectrum in our results may account for the observed longitudinal variation in the spectral power of the wave.


2016 ◽  
Vol 16 (8) ◽  
pp. 4885-4896 ◽  
Author(s):  
Sheng-Yang Gu ◽  
Han-Li Liu ◽  
Xiankang Dou ◽  
Tao Li

Abstract. The influence of the sudden stratospheric warming (SSW) on a quasi-2-day wave (QTDW) with westward zonal wave number 3 (W3) is investigated using the Thermosphere–Ionosphere–Mesosphere Electrodynamics General Circulation Model (TIME-GCM). The summer easterly jet below 90 km is strengthened during an SSW, which results in a larger refractive index and thus more favorable conditions for the propagation of W3. In the winter hemisphere, the Eliassen–Palm (EP) flux diagnostics indicate that the strong instabilities at middle and high latitudes in the mesopause region are important for the amplification of W3, which is weakened during SSW periods due to the deceleration or even reversal of the winter westerly winds. Nonlinear interactions between the W3 and the wave number 1 stationary planetary wave produce QTDW with westward zonal wave number 2 (W2). The meridional wind perturbations of the W2 peak in the equatorial region, while the zonal wind and temperature components maximize at middle latitudes. The EP flux diagnostics indicate that the W2 is capable of propagating upward in both winter and summer hemispheres, whereas the propagation of W3 is mostly confined to the summer hemisphere. This characteristic is likely due to the fact that the phase speed of W2 is larger, and therefore its waveguide has a broader latitudinal extension. The larger phase speed also makes W2 less vulnerable to dissipation and critical layer filtering by the background wind when propagating upward.


2017 ◽  
Author(s):  
Sheng-Yang Gu ◽  
Xiankang Dou ◽  
Dora Pancheva

Abstract. The quasi-two day wave (QTDW) during austral summer period usually coincides with sudden stratospheric warming (SSW) event in the winter hemisphere, while the influences of SSW on QTDW are not totally understood. In this work, the anomalous QTDW activities during the major SSW period of January 2006 are further investigated on the basis of hourly Navy Operational Global Atmospheric Prediction System-Advanced Level Physics High Altitude (NOGAPS-ALPHA) reanalysis dataset. Strong westward QTDW with zonal wave number 2 (W2) is identified besides the conventionally dominant mode of zonal wave number 3 (W3). Meanwhile, the W3 peaks with an extremely short period of ~ 42 hours. Compared with January 2005 with no evident SSW, we found that the zonal mean zonal wind in the summer mesosphere is enhanced during 2006. The enhanced summer easterly sustains critical layers for W2 and short-period W3 QTDWs with larger phase speed, which facilitate their amplification through wave-mean flow interaction. The stronger summer easterly also provides stronger barotropic/baroclinic instabilities and thus larger forcing for the amplification of QTDW. The inter-hemispheric coupling induced by strong winter stratospheric planetary wave activities during SSW period is most likely responsible for the enhancement of summer easterly. Besides, we found that the nonlinear interaction between W3 QTDW and the wave number 1 stationary planetary wave (SPW1) may also contribute to the source of W2 at middle and low latitudes in the mesosphere.


Atmosphere ◽  
2020 ◽  
Vol 11 (10) ◽  
pp. 1063
Author(s):  
Michal Kozubek ◽  
Jan Lastovicka ◽  
Peter Krizan

An exceptionally strong sudden stratospheric warming (SSW) in the Southern Hemisphere (SH) during September 2019 was observed. Because SSW in the SH is very rare, comparison with the only recorded major SH SSW is done. According to World Meteorological Organization (WMO) definition, the SSW in 2019 has to be classified as minor. The cause of SSW in 2002 was very strong activity of stationary planetary wave with zonal wave-number (ZW) 2, which reached its maximum when the polar vortex split into two circulations with polar temperature enhancement by 30 K/week and it penetrated deeply to the lower stratosphere and upper troposphere. On the other hand, the minor SSW in 2019 involved an exceptionally strong wave-1 planetary wave and a large polar temperature enhancement by 50.8 K/week, but it affected mainly the middle and upper stratosphere. The strongest SSW in the Northern Hemisphere was observed in 2009. This study provides comparison of two strongest SSW in the SH and the strongest SSW in the NH to show difference between two hemispheres and possible impact to the lower or higher layers.


2020 ◽  
Author(s):  
José M. Castanheira ◽  
Carlos A. F. Marques

<p>The Madden-Julian oscillation (MJO) is a major intraseasonal tropical atmospheric mode which modulates the precipitation in the Tropical Indian and Pacific  oceans. It is a large atmospheric convective system, dominated the zonal wave number one scale, that moves eastward from the east coast of Africa to eastern Pacific in a time scale of  30-70 days.</p><p>The MJO can have impact in global weather but is yet poorly simulated in most atmospheric circulation models. Therefore, it is important to understand the convective-dynamical nature of the MJO to understand the reasons for its poor representation in models.</p><p>Here we present a diagnostic study of the MJO by decomposing the circulation associated with a multivariate MJO index onto 3-Dimensional inertio-gravitic and Rossby modes, based on the ERA-I reanalysis. Results show that the main dynamical features of MJO are represented by  a combination of  Kelvin and the first (<em>l<sub>r </sub></em>= 1) equatorial Rossby modes with zonal wavenumbers 1 to 4. The vertical structures of the waves correspond to a first baroclinic mode in the troposphere. Moreover, a space–time spectral analysis confirmed the existence of an eastward moving MJO signal in the equatorial Rossby modes.</p><p>Nonlinear interactions between the westward moving equatorial Rossby waves and eastward moving Kelvin waves may be the cause for the slow eastward progression of the MJO. </p>


Sign in / Sign up

Export Citation Format

Share Document