Measuring system and method of determining the flow rate of components in a gas-liquid flow

1991 ◽  
Vol 34 (11) ◽  
pp. 1148-1151
Author(s):  
E. N. Brago
1999 ◽  
Vol 122 (1) ◽  
pp. 146-150 ◽  
Author(s):  
Barry J. Azzopardi ◽  
Sohail H. Zaidi

A new technique for the measurement of drop concentration in annular gas/liquid flow is presented. This is based on scattering of light by the drops. From the measured concentration, entrained liquid flow rate and thence the entrained fraction can be determined. The technique has been employed to obtain new data for vertical upward annular flow in a 0.038 m diameter pipe. The results have been compared with data from different pipe diameters and with the predictions of an annular flow model. [S0098-2202(00)02201-X]


2010 ◽  
Author(s):  
B. K. Gao ◽  
D. G. Sun ◽  
Z. G. Jia ◽  
Z. Q. Huang ◽  
Liejin Guo ◽  
...  

2013 ◽  
Vol 2013 (0) ◽  
pp. _S083014-1-_S083014-5
Author(s):  
Naoki HORIGUCHI ◽  
Hiroyuki YOSHIDA ◽  
Shin-ichiro UESAWA ◽  
Akiko KANEKO ◽  
Yutaka ABE

IEEE Access ◽  
2019 ◽  
Vol 7 ◽  
pp. 135933-135941 ◽  
Author(s):  
Aluisio Do N. Wrasse ◽  
Dalton Bertoldi ◽  
Eduardo N. Dos Santos ◽  
Rigoberto E. M. Morales ◽  
Marco J. Da Silva

2021 ◽  
Author(s):  
Abinash Barooah ◽  
Muhammad Saad Khan ◽  
Mohammad Azizur Rahman ◽  
Abu Rashid Hasan ◽  
Kaushik Manikonda ◽  
...  

Abstract Gas kick is a well control problem and is defined as the sudden influx of formation gas into the wellbore. This sudden influx, if not controlled, may lead to a blowout problem. An accidental spark during a blowout can lead to a catastrophic oil or gas fire. This makes early gas kick detection crucial to minimize the possibility of a blowout. The conventional kick detection methods such as the pit gain and flow rate method have very low sensitivity and are time-consuming. Therefore, it is required to identify an alternative kick detection method that could provide real-time readings with higher sensitivity. In this study, Electrical Resistance Tomography (ERT) and dynamic pressure techniques have been used to investigate the impact of various operating parameters on gas volume fraction and pressure fluctuation for early kick detection. The experiments were conducted on a horizontal flow loop of 6.16 m with an annular diameter ratio of 1.8 for Newtonian fluid (Water) with varying pipe inclination angle (0–10°) and annulus eccentricity (0–30%), liquid flow rate (165–265 kg/min), and air input pressure (1–2 bar). The results showed that ERT is a promising tool for the measurement of in-situ gas volume fraction. It was observed that the liquid flow rate, air input pressure and inclination has a much bigger impact on gas volume fraction whereas eccentricity does not have a significant influence. An increase in the liquid flow rate and eccentricity by 60% and 30% decreased the gas volume fraction by an average of 32.8% and 5.9% respectively, whereas an increase in the inclination by 8° increased the gas volume fraction by an average 42%. Moreover, it was observed that the wavelet analysis of the pressure fluctuations has good efficacy for real-time kick detection. Therefore, this study will help provide a better understanding of the gas-liquid flow and potentially provide an alternative method for early kick detection.


2016 ◽  
Vol 859 ◽  
pp. 153-157
Author(s):  
Pao Chi Chen ◽  
Sheng Zhong Lin

This work uses a continuous bubble-column scrubber for the absorption of CO2 with a 5M MEA solution under a constant pH environment to explore the effect of the pH of the solution and gas-flow rate (Qg) on the removal efficiency (E), absorption rate (RA), overall mass-transfer coefficient (KGa), liquid flow rate (QL), gas-liquid flow ratio (γ), and scrubbing factors (φ). From the outlet CO2 concentration with a two-film model, E, RA, KGa, QL, γ, and φ can be simultaneously determined at the steady state. Depending on the operating conditions, the results show that E (80-97%), RA(2.91x10-4-10.0x10-4mol/s-L), KGa (0.09-0.48 1/s), QL(8.74-230.8mL/min), γ (0.19-5.39), and φ (0.031-0.74 mol/mol-L) are found to be comparable with other solvents. In addition, RA, KGa, E, and QL have been used to correlate with pH and Qg, respectively, with the results further explained.


Author(s):  
Henrique Stel ◽  
Edgar Minoru Ofuchi ◽  
Rafael Fabrício Alves ◽  
Sergio Chiva ◽  
Rigoberto E. M. Morales

Abstract Centrifugal pumps operating with gas-liquid flows can undergo severe performance degradation. This can be attributed to an effect of the gas phase on the liquid flow orientation in the pump impeller channels, which induces additional hydraulic losses that negatively affect the delivered head and flow rate. Effort to investigate the effect of many operating parameters on the pump performance under multiphase flows can be found on numerous experimental investigations. Few studies, however, bring together flow visualization to understand the physics behind the behavior of centrifugal pumps with gas-liquid flows. One issue is that pumps involve rotating parts, metallic casing and limited visual access, sometimes making it hard to interpret flow patterns and to understand complex phenomena, such as bubble breakup and coalescence. Such issues usually lead to unsatisfactory image quality, which in turn makes it difficult to extract quantitative data from the obtained images, such as gas volume fraction and bubble size distribution. In an attempt to overcome many difficulties of previous investigations, this work presents an experimental study aimed to visualize gas-liquid flow patterns in a centrifugal rotor prototype using a novel approach. The experimental apparatus uses a plane and transparent rotor, assembled with an intake pipe and a discharge chamber by means of a dynamic seal system that dismisses the use of an enclosing pump casing. This makes possible to use back illumination of the impeller for visualization, which in turn is done by using a camera attached to the impeller axis for filming in a rotating frame of reference. This setup, which is new in the open literature, provides high image contrast and sharpness for clear interpretation of the flow patterns found inside the rotor channels for a wide range of operating conditions. This advantage, in turn, allows using image processing for quantitative assessment of gas volume fraction distributions. Pressure rise versus flow rate curves are measured together to investigate the rotor performance degradation associated with the gas-liquid flow patterns for a range of liquid and gas flow rates. Information obtained with the designed experimental setup at controlled conditions help not just to bring further understanding to the complex phenomena involved with multiphase flows in rotating devices, but also in the direction of validating a numerical model for reliable simulations of gas-liquid flows in centrifugal pumps, which is lacking in the current literature.


Author(s):  
Robert Bowden ◽  
Wael F. Saleh ◽  
Ibrahim Hassan

Experiments were performed in a 50.8 mm diameter horizontal pipe with co-current stratified gas-liquid flow. A single, 6.35 mm diameter, downward oriented discharge was located at 1829 mm from the horizontal pipe’s inlet. Water and air, operating at a pressure of 312 kPa and adiabatic conditions, were used. The objectives of the study were to investigate gas entrainment in the discharge branch. Qualitative flow visualization of the two-phase entrainment flow structure was conducted, and measurements of the critical liquid height, two-phase mass flow rate, and quality, are provided. The results were compared with available correlations and showed good agreement with selected models.


Sign in / Sign up

Export Citation Format

Share Document