A type of solution for thin shells in the form of an hyperbolic paraboloid

1960 ◽  
Vol 11 (5) ◽  
pp. 356-367
Author(s):  
Gilbert H. Beguin
Author(s):  
Maria E. Moreyra Garlock ◽  
Branko Glisic

Max Borges Jr. (1918 – 2009) was an architect of thin shell concrete structures in Cuba in the 1950's. During this time, Félix Candela (1910 – 1997) owned a construction company that was dedicated to the design and construction of thin shells. Candela also owned an international reputation as a designer of thin shells in the hyperbolic paraboloid (hypar) form. The two men worked together for the first time on a project in Mexico City in 1954, and since then collaborated on several more, most of them in Cuba. This paper illustrates the architect – engineer relationship between Borges and Candela and documents the collaborative projects between them. The research grew out of a course co-taught by the authors, where the course was inspired by the style of teaching of David Billington (1927 – 2018) that integrates engineering with the humanities. Billington believed in scholarship based on historical studies and documentation of heritage structures. This paper is in tribute to this great man who continues to inspire.


Author(s):  
О V Andriichuk ◽  
S O Uzhehov

Experimental research of new materials and structures with improved parameters of strength, fracture toughness, bearing capacity and their lifetime in comparison with typical elements is an actual problem of building science.Nowadays there is a trend to design and use for buildings covering the new design solutions as the thin shells. One of the types of thin shells are Gaussian shells with negative curvature. It’s worth to note that in the last decade, a considerable number of researches of thin-walled structures made of steel fiber reinforced concrete were conducted, which confirmed the efficiency of its use to enhance their hardness, fracture toughness and thus longer life.The article presents the results of the authors’ experimental studies of fracture toughness of thin-walled cover structures with Gaussian negative curvature in the shape of hyperbolic paraboloid made of ferrocement and steel fiber reinforced concrete under the action of the operating load.The load application was carried out for ten steps, after each step the pause was for 15...20 min, during which the data of the strain-gauge station VNP-8 was recorded, using a microscope were measured and recorded the width of the cracks, deflections of the structure were measured etc.The external force was evenly-distributed to its applications and the impact was simulated according to the real conditions of construction use.The experimental part of the research was conducted at the laboratory of building materials and structures of Lutsk National Technical University. In scientific work carried out mapping and comparison of the obtained experimental results, carried out processing and analysis, presents the conclusions.During the researches it was found that the fracture toughness of thin-walled shell cover with Gaussian negative curvature in the shape of a hyperbolic paraboloid with dispersed reinforcement (steel fiber reinforced concrete) is higher than in the shell made of ferrocement. Accordingly, it can be argued about the increasing of the lifetime of steel fiber reinforced concrete shell covering in comparison with the ferrocement shell.


PCI Journal ◽  
1958 ◽  
Vol 3 (1) ◽  
pp. 70-78
Author(s):  
T. Y. Lin ◽  
R. Itaya

1996 ◽  
Author(s):  
Hans Irschik ◽  
Franz Ziegler ◽  
Hans Irschik ◽  
Franz Ziegler

Author(s):  
István Ecsedi ◽  
Attila Baksa

AbstractThis paper deals with the Saint-Venant torsion of elastic, cylindrically orthotropic bar whose cross section is a sector of a circular ring shaped bar. The cylindrically orthotropic homogeneous elastic wedge-shaped bar strengthened by on its curved boundary surfaces by thin isotropic elastic shells. An analytical method is presented to obtain the Prandtl’s stress function, torsion function, torsional rigidity and shearing stresses. A numerical example illustrates the application of the developed analytical method.


2021 ◽  
Vol 8 (1) ◽  
pp. 259-270
Author(s):  
Giulio Mirabella Roberti ◽  
Giuseppe Ruscica ◽  
Vittorio Paris

Abstract The research starts from an analogy found between two apparently very different structural solutions: the double spiral pattern of the herringbone brick courses in the domes built by Antonio da Sangallo the Younger (1484-1546) during the Renaissance, and the particular pattern of a wooden floor ‘à la Serlio’, described by Amand Rose Emy in his Treatise at the beginning of 19th century, made by diagonal beams reciprocally sustained. The diagonal pattern of the floor has a geometrical relationship with the cross-herringbone pattern, so that the latter can be obtained by some geometrical transformations of the former. This pattern was also used in thin shells built by Nervi, from the destroyed airplane hangars in Tuscany to the Palazzetto dello sport in Rome, and even by Piacentini in 1936 and earlier in some neoclassical domes. Thus the construction tool, useful for building domes without expensive scaffolding, could have a structural role at the completed construction stage. Within the research different structures were investigated, in order to observe the relevance of this peculiar structural scheme particularly in the construction of modern domes.


Author(s):  
Sarmila Sahoo

The present study investigates buckling characteristics of cut-out borne stiffened hyperbolic paraboloid shell panel made of laminated composites using finite element analysis to evaluate the governing differential equations of global buckling of the structure. The finite element code is validated by solving benchmark problems from literature. Different parametric variations are studied to find the optimum panel buckling load. Laminations, boundary conditions, depth of stiffener and arrangement of stiffeners are found to influence the panel buckling load. Effect of different parameters like cut-out size, shell width to thickness ratio, degree of orthotropy and fiber orientation angle of the composite layers on buckling load are also studied. Parametric and comparative studies are conducted to analyze the buckling strength of composite hyperbolic paraboloid shell panel with cut-out.


1. Introduction and Summary. —This paper deals with the elastic stability of a circular annular plate under uniform shearing forces applied at its edges. Investigations of the stability of plane plates are altogether simpler than those necessary in the case of curved plates or shells. In the first place, as shown by Mr. R. V. Southwell, two of the three equations of stability relate to a mode of instability that is not of practical interest, and are entirely independent of the third equation which gives the ordinary mode of instability resulting in the familiar bending of the middle surface of the plate. Consequently with a plane plate there is only one equation of stability to be solved, as contrasted with the case of a shell where the three equations are dependent, and must all be solved. In the second place the theory of thin shells can be used with confidence in a plane plate problem, though a more laborious procedure is necessary to deal adequately with a shell. The only stability equation required for the annular plate is therefore deduced without trouble from the theory of thin shells, and its solution presents no difficulty in the case of uniform shearing forces. A numerical discussion is given of the stability of the plate under such forces, the “favourite type of distortion” and the stess that will produce it being obtained for plates with clamped edges in wich the ratio of the outer to the inner radius exceeds 3·2. To some extent to results have been checked by experiment, in which part of the work the viter is indebted to Prof. G. I. Taylor for his valuable help and advice. Distrtion of the type predicted by the theory took place in the two thin plates of rober different ratio of radii, which were used. The disposition of the loci of points which undergo maximum normal displace nt gives some idea of the appearance of the plate after distortion has taken pce. The points have been calculated for a plate in which the ratio of radii 4·18, and the loci are shown on a diagram, which may be compared with a potograph of a distorted plate in which this ratio is 4·3. The ratio of normal dplacements of points of the plate can be seen from contours drawn on the ne diagram. (See pp. 280, 281.)


Sign in / Sign up

Export Citation Format

Share Document