Magnetic field at the core boundary in the nearly symmetric hydromagnetic dynamo z

1987 ◽  
Vol 31 (1) ◽  
pp. 37-42 ◽  
Author(s):  
Alexander P. Anufriev ◽  
Ivan Cupal ◽  
G. Siráň
2017 ◽  
Vol 68 (9) ◽  
pp. 2162-2165 ◽  
Author(s):  
Katarzyna Bloch ◽  
Mihail Aurel Titu ◽  
Andrei Victor Sandu

The paper presents the results of structural and microstructural studies for the bulk Fe65Co10Y5B20 and Fe63Co10Y7B20 alloys. All the rods obtained by the injection casting method were fully amorphous. It was found on the basis of analysis of distribution of hyperfine field induction that the samples of Fe65Co10Y5B20 alloy are characterised with greater atomic packing density. Addition of Y to the bulk amorphous Fe65Co10Y5B20 alloy leads to the decrease of the average induction of hyperfine field value. In a strong magnetic field (i.e. greater than 0.4HC), during the magnetization process of the alloys, where irreversible processes take place, the core losses associated with magnetization and de-magnetization were investigated.


2021 ◽  
Vol 0 (0) ◽  
Author(s):  
Sujata Gupta ◽  
Anupam Mital

Abstract This study presents the behaviour of model footing resting over unreinforced and reinforced sand bed under different loading conditions carried out experimentally. The parameters investigated in this study includes the number of reinforced layers (N = 0, 1, 2, 3, 4), embedment ratio (Df /B = 0, 0.5, 1.0), eccentric and inclined ratio (e/L, e/B = 0, 0.05, 0.10, 0.15) and (a = 0°, 7°, 14°). The test sand was reinforced with bi-axial geogrid (Bx20/20). The test results show that the ultimate bearing capacities decrease with axial eccentricity and inclination of applied loads. The test results also show that the depth of model footing increase zero to B (B = width of model footing), an increase of ultimate bearing capacity (UBC) approximated at 93%. Similarly, the multi-layered geogrid reinforced sand (N = 0 to 4) increases the UBC by about 75%. The bearing capacity ratio (BCR) of the model footing increases with an increasing load eccentricity to the core boundary of footing; if the load eccentricities increase continuity, the BCR decreases. The tilt of the model footing is increased by increasing the eccentricity and decreases with increasing the number of reinforcing layers.


1999 ◽  
Vol 42 (2) ◽  
Author(s):  
A. De Santis ◽  
M. Chiappini ◽  
J. M. Torta ◽  
R. R. B. von Frese

The properties of the Earth's core magnetic field and its secular variation are poorly known for the Antarctic. The increasing availability of magnetic observations from airborne and satellite surveys, as well as the existence of several magnetic observatories and repeat stations in this region, offer the promise of greatly improving our understanding of the Antarctic core field. We investigate the possible development of a Laplacian reference model of the core field from these observations using spherical cap harmonic analysis. Possible uses and advantages of this approach relative to the implementations of the standard global reference field are also considered.


Author(s):  
Paul Walker ◽  
Ulrich Krohn ◽  
Carty David

ARBTools is a Python library containing a Lekien-Marsden type tricubic spline method for interpolating three-dimensional scalar or vector fields presented as a set of discrete data points on a regular cuboid grid. ARBTools was developed for simulations of magnetic molecular traps, in which the magnitude, gradient and vector components of a magnetic field are required. Numerical integrators for solving particle trajectories are included, but the core interpolator can be used for any scalar or vector field. The only additional system requirements are NumPy.


The westward drift of the non-dipole part of the earth’s magnetic field and of its secular variation is investigated for the period 1907-45 and the uncertainty of the results discussed. It is found that a real drift exists having an angular velocity which is independent of latitude. For the non-dipole field the rate of drift is 0.18 ± 0-015°/year, that for the secular variation is 0.32 ±0-067°/year. The results are confirmed by a study of harmonic analyses made between 1829 and 1945. The drift is explained as a consequence of the dynamo theory of the origin of the earth’s field. This theory required the outer part of the core to rotate less rapidly than the inner part. As a result of electromagnetic forces the solid mantle of the earth is coupled to the core as a whole, and the outer part of the core therefore travels westward relative to the mantle, carrying the minor features of the field with it.


2021 ◽  
Author(s):  
Jérémy Rekier ◽  
Santiago Triana ◽  
Véronique Dehant

<p>Magnetic fields inside planetary objects can influence their rotation. This is true, in particular, of terrestrial objects with a metallic liquid core and a self-sustained dynamo such as the Earth, Mercury, Ganymede, etc. and also, to a lesser extent, of objects that don’t have a dynamo but are embedded in the magnetic field of their parent body like Jupiter’s moon, Io.<br>In these objects, angular momentum is transfered through the electromagnetic torques at the Core-Mantle Boundary (CMB) [1]. In the Earth, these have the potential to produce a strong modulation in the length of day at the decadal and interannual timescales [2]. They also affect the periods and amplitudes of nutation [3] and polar motion [4]. <br>The intensity of these torques depends primarily on the value of the electric conductivity at the base of the mantle, a close study and detailed modelling of their role in planetary rotation can thus teach us a lot about the physical processes taking place near the CMB.</p><p>In the study of the Earth’s length of day variations, the interplay between rotation and the internal magnetic field arrises from the excitation of torsional oscillations inside the Earth’s core [5]. These oscillations are traditionally modelled based on a series of assumptions such as that of Quasi-Geostrophicity (QG) of the flow inside the core [6]. On the other hand, the effect of the magnetic field on nutations and polar motion is traditionally treated as an additional coupling at the CMB [1]. In such model, the core flow is assumed to have a uniform vorticity and its pattern is kept unaffected by the magnetic field. </p><p>In the present work, we follow a different approach based on the study of magneto-inertial waves. When coupled to gravity through the effect of density stratification, these waves are known to play a crucial role in the oscillations of stars known as magneto-gravito-inertial modes [7]. The same kind of coupling inside the Earth’s core gives rise to the so-called MAC waves which are directly and conceptually related to the aforementioned torsional oscillations [8]. </p><p>We present our preliminary results on the computation of magneto-inertial waves in a freely rotating planetary model with a partially conducting mantle. We show how these waves can alter the frequencies of the free rotational modes identified as the Free Core Nutation (FCN) and Chandler Wobble (CW). We analyse how these results compare to those based on the QG hypothesis and how these are modified when viscosity and density stratification are taken into account. </p><p>[1] Dehant, V. et al. Geodesy and Geodynamics 8, 389–395 (2017). doi:10.1016/j.geog.2017.04.005<br>[2] Holme, R. et al. Nature 499, 202–204 (2013). doi:10.1038/nature12282<br>[3] Dumberry, M. et al. Geophys. J. Int. 191, 530–544 (2012). doi:10.1111/j.1365-246X.2012.05625.x<br>[4] Kuang, W. et al. Geod. Geodyn. 10, 356–362 (2019). doi:10.1016/j.geog.2019.06.003<br>[5] Jault, D. et al. Nature 333, 353–356 (1988). doi:10.1038/333353a0<br>[6] Gerick, F. et al. Geophys. Res. Lett. (2020). doi:10.1029/2020gl090803<br>[7] Mathis, S. et al. EAS Publications Series 62 323-362 (2013). doi: 10.1051/eas/1362010<br>[8] Buffett, B. et al. Geophys. J. Int. 204, 1789–1800 (2016). doi:10.1093/gji/ggv552</p>


2021 ◽  
Author(s):  
Marine Lasbleis

<div> <p>Growth of the solid inner core is generally considered to power the Earth's present geodynamo. Cristallisation of a solid central inner core has also been proposed to drive the lunar dynamo and to generate a magnetic field in smaller bodies. In a previous work, we estimated the compaction of planetary cores for different scenarios of growth (with or without supercooling) and different sizes of the inner core. Our main results indicated that small inner cores are unlikely to compact efficiently the liquid trapped during the first steps of the growth.</p> <p>This is especially true for small bodies for which the typical size of the core is similar to the compaction length. The light elements are thus trapped during the cristallisation, reducing the release of latent heat and of light elements. We present here a model to include the effect of an inefficient compaction in the energy budget of a planetary core and investigate the implications for the dynamo evolution in small bodies. We apply this model for the evolution of the core of the Moon. </p> </div>


1965 ◽  
Vol 55 (2) ◽  
pp. 441-461
Author(s):  
Goetz G. R. Buchbinder

Abstract The core-reflected phase, PcP, from the BILBY event, received at stations between 19° and 88°, arrived early by an average of 1.80 seconds with respect to the Jeffries-Bullen tables. The standard deviation of these data was 0.77 seconds. The corresponding P phases were early by 1.34 seconds. The tables therefore need adjustments. If the core boundary is to be moved by more than 10 km from the value of 2898 km then the mantle seismic velocity immediately above the core must be changed also. The PcP/P amplitude ratios are nearly always much larger than those predicted theoretically.


2016 ◽  
Vol 2016 (DPC) ◽  
pp. 002111-002130 ◽  
Author(s):  
Bruce C Kim ◽  
Saikat Mondal

This paper describes the design of a Through Silicon Via based high density 3D inductors for Internet of Things (IoT) applications. We present some possible challenges for TSV-based inductors in IoT applications. The current trend towards Internet of Things (IOT), System in Package (SiP) and Package-on-Package (PoP) requires meeting the power requirements of heterogeneous technologies while maintaining minimum package size. 3-D chip stacking has emerged as one of the potential solutions due to its high density integration in a 3D power electronics packaging regime. As an integral part of many power electronics applications, TSV-based inductors are becoming a popular choice because of their high inductance density due to the reduced on-chip footprint compared to conventional planar inductors. Depending on the requirement, values of these inductors could range from a few nanohenries to hundreds of microhenries. Small inductors with a high quality factor are mainly used for RF filter applications, whereas large inductors are used in power electronics packaging. For high inductance it is necessary to use ferromagnetic materials. A conventional ferromagnetic metal core like nickel could offer high permeability, which can help to boost the inductance. However, the magnetic field lines within a metal core induce eddy current which can have multiple adverse effect in power electronics packaging. For example, it has long been known that the current can increase the resistance in transformer winding [1]. Eddy current can also heat up the core of the inductor which makes the heat sink process in 3D packaging even more challenging. One way to decrease the eddy current, is to pattern and laminate the core block into multiple segments orthogonal to the direction of the magnetic field line [2]. Another method is to increase the resistivity of the core material so that the eddy current is limited to a very small magnitude [3].


Sign in / Sign up

Export Citation Format

Share Document