Initial critical load on the ground in the case of a circular foundation

1984 ◽  
Vol 21 (6) ◽  
pp. 269-272 ◽  
Author(s):  
K. E. Egorov ◽  
T. I. Finaeva
Keyword(s):  
2000 ◽  
Vol 33 (13) ◽  
pp. 4836-4841 ◽  
Author(s):  
P. Adriaensens ◽  
L. Storme ◽  
R. Carleer ◽  
D. Vanderzande ◽  
J. Gelan ◽  
...  

Author(s):  
Jia-Bin Sun ◽  
Xin-Sheng Xu ◽  
Chee-Wah Lim

AbstractIn this paper, the dynamic buckling of an elastic cylindrical shell subjected to an axial impact load is analyzed in Hamiltonian system. By employing a symplectic method, the traditional governing equations are transformed into Hamiltonian canonical equations in dual variables. In this system, the critical load and buckling mode are reduced to solving symplectic eigenvalues and eigensolutions respectively. The result shows that the critical load relates with boundary conditions, thickness of the shell and radial inertia force. And the corresponding buckling modes present some local shapes. Besides, the process of dynamic buckling is related to the stress wave, the critical load and buckling mode depend upon the impacted time. This paper gives analytically and numerically some new rules of the buckling problem, which is useful for designing shell structures.


Author(s):  
Mihalache Marius Andrei ◽  
Nagit Gheorghe ◽  
Musca Gavril ◽  
Merticaru Vasile ◽  
Ripanu Marius Ionut
Keyword(s):  

2015 ◽  
Vol 94 ◽  
pp. 293-301 ◽  
Author(s):  
J. Awrejcewicz ◽  
A.V. Krysko ◽  
I.V. Papkova ◽  
I.Y. Vygodchikova ◽  
V.A. Krysko

2014 ◽  
Vol 20 (1) ◽  
pp. 53-79 ◽  
Author(s):  
Roger Fosdick ◽  
Pilade Foti ◽  
Aguinaldo Fraddosio ◽  
Salvatore Marzano ◽  
Mario Daniele Piccioni

1994 ◽  
Vol 356 ◽  
Author(s):  
V. A. C. Haanappel ◽  
H. D. van Corbach ◽  
T. Fransen ◽  
P. J. Gellings

AbstractAmorphous alumina films were deposited by metal-organic chemical vapour deposition (MOCVD) on stainless steel, type AISI 304. The MOCVD experiments were performed in nitrogen at low pressure (0.17 kPa (1.25 torr)).The effect of deposition temperature (200 − 380 °C), growth rate, film thickness, and post-deposition thermal treatment on the mechanical properties was studied. The experiments were performed with a scanning-scratch tester. The experiments are based on the estimation of the film adhesion to the substrate by determining a critical load, Lc: the load where the film starts to spall or to delaminate.The best mechanical properties were obtained with unannealed samples. After thermal annealing the critical load decreases. Regarding the unannealed samples, the critical load increased with increasing film thickness. The deposition temperature and the growth rate had no effect on the critical load.


The circumstances are discussed under which orthogonal relations exist between the elastic critical modes of plane frames subjected to proportional loading. Orthogonal relations may be obtained provided the loading does not produce any components of deformation associated with any of the critical modes at arbitrary levels of the load factor, and provided no part of the structure remains statically indeterminate due to bar forces when all rigid joints are replaced by pin joints. When at arbitrary load factors, the structure deforms with components associated with any of the buckling modes, the elastic failure load is not identical with the lowest elastic critical load, although for many frames the two loads may be very close. A general expression is obtained which reveals the relation between the deformations at an arbitrary load level and the deflexions given by linear analysis. The difference between the elastic failure load and the elastic critical load is discussed, and an approximate treatment applicable to certain types of frame and associated loading is developed.


Sign in / Sign up

Export Citation Format

Share Document