The effect of histamine on the oxidative burst of HL60 cells before and after exposure to reactive oxygen species

1995 ◽  
Vol 44 (3) ◽  
pp. 99-104 ◽  
Author(s):  
T. -L. Ching ◽  
J. G. Koelemij ◽  
A. Bast
Antioxidants ◽  
2020 ◽  
Vol 9 (11) ◽  
pp. 1155
Author(s):  
Olga Witkowska-Piłaszewicz ◽  
Rafał Pingwara ◽  
Anna Winnicka

Physical activity has an influence on a variety of processes in an athlete’s organism including the immune system. Unfortunately, there is a lack of studies regarding racehorse immune cells, especially when the horse model is compared to human exercise physiology. The aim of the study was to determine changes in immune cell proliferation, lymphocyte populations, and monocyte functionality in trained and untrained racehorses after exercise. In this study, field data were collected. The cells from 28 racehorses (14 untrained and 14 well-trained) were collected before and after exercise (800 m at a speed of about 800 m/min) and cultured for 4 days. The expression of CD4, CD8, FoxP3, CD14, MHCII, and CD5 in PBMC, and reactive oxygen species (ROS) production, as well as cell proliferation, were evaluated by flow cytometry. In addition, IL-1β, IL-4, IL-6, IL-10, IL-17, INF-γ, and TNF-α concentrations were evaluated by ELISA. The creation of an anti-inflammatory environment in well-trained horses was confirmed. In contrast, a pro-inflammatory reaction occurred in untrained horses after training. In conclusion, an anti-inflammatory state occurs in well-trained racehorses, which is an adaptational reaction to an increased workload during training.


2010 ◽  
Vol 22 (1) ◽  
pp. 325
Author(s):  
M. E. Dell'Aquila ◽  
B. Ambruosi ◽  
R. Guastamacchia ◽  
F. Binetti ◽  
E. Ciani ◽  
...  

Juvenile in vitro embryo transfer (JIVET) reduces the generation interval and increases the rate of genetic gain. The developmental competence of in vitro-produced embryos is strictly related to oocyte quality. Oxidative stress in the oocyte is an emerging problem in reproductive in vitro technologies, due to the gas atmosphere used to incubate oocytes and the lack of physiological defense mechanisms available in the female reproductive tract. The major source of reactive oxygen species (ROS) is represented by mitochondria where ROS are produced during oxidative phosphorylation. The aim of the present study was to analyze mitochondria and ROS in ovine prepubertal oocytes before and after IVM in order to clarify their suitability in JIVET programs. Cumulus-oocyte complexes from the ovaries of 38 slaughtered prepubertal (less than 8 months of age) lambs of the Comisana breed were analyzed at retrieval (group A) or after IVM (group B; Ambruosi et al. 2009 Theriogenology 71, 1093-1104). After cumulus cell removal, all oocytes underwent nuclear chromatin, mitochondria and ROS evaluation by confocal analysis of fluorescence distribution and intensity. Hoechst 33258 and Mitotracker Orange CMTM Ros (Molecular Probes Inc., Eugene, OR) were used to label nuclear chromatin and mitochondria (Ambruosi et al. 2009) and 2′,7′-dichloro-dihydro-fluorescein diacetate was used for ROS labelling (Hashimoto et al. 2000 Mol. Reprod. Dev. 57, 353-360). Out of 65 oocytes from group A, 38 oocytes with regular size (>130 μm in diameter), morphology and nuclear chromatin at the GV stage were selected for analysis. One-hundred-thirty-eight oocytes underwent IVM (group B). Nuclear maturation rate (metaphase II with 1st polar body extruded) was 54%, 75/138. All MII oocytes were used for analysis. Significantly higher rate of oocytes from group B showed heterogeneous (large aggregates, clusters, pericortical, perinuclear) mitochondrial (mt) distribution pattern than oocytes from group A (55%, 41/75 v. 29%, 11/38, respectively; P < 0.05) which showed uniform distribution of small mt aggregates. Fluorescent intensity of mt labeling did not differ between groups (43.05 ± 16.15 v. 45.89 ± 10.36, for group A and B respectively; NS). In most of the oocytes from both groups, intracellular ROS were distributed in small or large aggregates (35/38, 92% and 62/75, 83%). No statistical difference was observed for intracellular ROS levels between oocytes from group A (66.36 ± 13.2) and group B (72.84 ± 20.63; NS). The culture conditions used in this study provided normal mt distribution and intracellular ROS levels. Qualitative and quantitative evaluation of mitochondria and intracellular ROS could be useful to improve in vitro culture methods in ovine prepubertal oocytes.


2015 ◽  
Vol 82 (5) ◽  
pp. 1577-1585 ◽  
Author(s):  
Jia-Yu Zhou ◽  
Jie Yuan ◽  
Xia Li ◽  
Yi-Fan Ning ◽  
Chuan-Chao Dai

ABSTRACTOxygenous terpenoids are active components of many medicinal plants. However, current studies that have focused on enzymatic oxidation reactions cannot comprehensively clarify the mechanisms of oxygenous terpenoid synthesis and diversity. This study shows that an endophytic bacterium can trigger the generation of reactive oxygen species (ROS) that directly increase oxygenous sesquiterpenoid content and diversity inAtractylodes lancea.A. lanceais a famous but endangered Chinese medicinal plant that contains abundant oxygenous sesquiterpenoids. Geo-authenticA. lanceaproduces a wider range and a greater abundance of oxygenous sesquiterpenoids than the cultivated herb. Our previous studies have shown the mechanisms behind endophytic promotion of the production of sesquiterpenoid hydrocarbon scaffolds; however, how endophytes promote the formation of oxygenous sesquiterpenoids and their diversity is unclear. After colonization byPseudomonas fluorescensALEB7B, oxidative burst and oxygenous sesquiterpenoid accumulation inA. lanceaoccur synchronously. Treatment with exogenous hydrogen peroxide (H2O2) or singlet oxygen induces oxidative burst and promotes oxygenous sesquiterpenoid accumulationin planta. Conversely, pretreatment of plantlets with the ROS scavenger ascorbic acid significantly inhibits the oxidative burst and oxygenous sesquiterpenoid accumulation induced byP. fluorescensALEB7B. Furtherin vitrooxidation experiments show that several oxygenous sesquiterpenoids can be obtained from direct oxidation caused by H2O2or singlet oxygen. In summary, this study demonstrates that endophytic bacterium-triggered ROS can directly oxidize oxygen-free sesquiterpenoids and increase the oxygenous sesquiterpenoid content and diversity inA. lancea, providing a novel explanation of the mechanisms of oxygenous terpenoid synthesisin plantaand an essential complementarity to enzymatic oxidation reactions.


2014 ◽  
Vol 306 (5) ◽  
pp. F542-F550 ◽  
Author(s):  
Kevin L. Gordish ◽  
William H. Beierwaltes

Resveratrol is suggested to have beneficial cardiovascular and renoprotective effects. Resveratrol increases endothelial nitric oxide synthase (eNOS) expression and nitric oxide (NO) synthesis. We hypothesized resveratrol acts as an acute renal vasodilator, mediated through increased NO production and scavenging of reactive oxygen species (ROS). In anesthetized rats, we found 5.0 mg/kg body weight (bw) of resveratrol increased renal blood flow (RBF) by 8% [from 6.98 ± 0.42 to 7.54 ± 0.17 ml·min−1·gram of kidney weight−1 (gkw); n = 8; P < 0.002] and decreased renal vascular resistance (RVR) by 18% from 15.00 ± 1.65 to 12.32 ± 1.20 arbitrary resistance units (ARU; P < 0.002). To test the participation of NO, we administered 5.0 mg/kg bw resveratrol before and after 10 mg/kg bw of the NOS inhibitor N-nitro-l-arginine methyl ester (l-NAME). l-NAME reduced the increase in RBF to resveratrol by 54% (from 0.59 ± 0.05 to 0.27 ± 0.06 ml·min−1·gkw−1; n = 10; P < 0.001). To test the participation of ROS, we gave 5.0 mg/kg bw resveratrol before and after 1 mg/kg bw tempol, a superoxide dismutase mimetic. Resveratrol increased RBF 7.6% (from 5.91 ± 0.32 to 6.36 ± 0.12 ml·min−1·gkw−1; n = 7; P < 0.001) and decreased RVR 19% (from 18.83 ± 1.37 to 15.27 ± 1.37 ARU). Tempol blocked resveratrol-induced increase in RBF (from 0.45 ± 0.12 to 0.10 ± 0.05 ml·min−1·gkw−1; n = 7; P < 0.03) and the decrease in RVR posttempol was 44% of the control response (3.56 ± 0.34 vs. 1.57 ± 0.21 ARU; n = 7; P < 0.006). We also tested the role of endothelium-derived prostanoids. Two days of 10 mg/kg bw indomethacin pretreatment did not alter basal blood pressure or RBF. Resveratrol-induced vasodilation remained unaffected. We conclude intravenous resveratrol acts as an acute renal vasodilator, partially mediated by increased NO production/NO bioavailability and superoxide scavenging but not by inducing vasodilatory cyclooxygenase products.


2016 ◽  
Vol 96 ◽  
pp. S61
Author(s):  
Jaime López-Cruz ◽  
Óscar Crespo-Salvador ◽  
Emma Fernández-Crespo ◽  
Pilar García-Agustín ◽  
Carmen González-Bosch

2015 ◽  
Vol 309 (8) ◽  
pp. C558-C567 ◽  
Author(s):  
Andrés Esparza ◽  
Ziomara P. Gerdtzen ◽  
Alvaro Olivera-Nappa ◽  
J. Cristian Salgado ◽  
Marco T. Núñez

Recent evidence shows that iron induces the endocytosis of the iron transporter dimetal transporter 1 (DMT1) during intestinal absorption. We, and others, have proposed that iron-induced DMT1 internalization underlies the mucosal block phenomena, a regulatory response that downregulates intestinal iron uptake after a large oral dose of iron. In this work, we investigated the participation of reactive oxygen species (ROS) in the establishment of this response. By means of selective surface protein biotinylation of polarized Caco-2 cells, we determined the kinetics of DMT1 internalization from the apical membrane after an iron challenge. The initial decrease in DMT1 levels in the apical membrane induced by iron was followed at later times by increased levels of DMT1. Addition of Fe2+, but not of Cd2+, Zn2+, Cu2+, or Cu1+, induced the production of intracellular ROS, as detected by 2′,7′-dichlorofluorescein (DCF) fluorescence. Preincubation with the antioxidant N-acetyl-l-cysteine (NAC) resulted in increased DMT1 at the apical membrane before and after addition of iron. Similarly, preincubation with the hydroxyl radical scavenger dimethyl sulfoxide (DMSO) resulted in the enhanced presence of DMT1 at the apical membrane. The decrease of DMT1 levels at the apical membrane induced by iron was associated with decreased iron uptake rates. A kinetic mathematical model based on operational rate constants of DMT1 endocytosis and exocytosis is proposed. The model qualitatively captures the experimental observations and accurately describes the effect of iron, NAC, and DMSO on the apical distribution of DMT1. Taken together, our data suggest that iron uptake induces the production of ROS, which modify DMT1 endocytic cycling, thus changing the iron transport activity at the apical membrane.


Sign in / Sign up

Export Citation Format

Share Document