Disease resistance in the genusAegilops L. — stem rust, leaf rust, stripe rust, and powdery mildew

1985 ◽  
Vol 33 (2) ◽  
pp. 133-153 ◽  
Author(s):  
Jan Valkoun ◽  
Karl Hammer ◽  
Dagmar Kučerová ◽  
Pavel Bartoš
2004 ◽  
Vol 84 (4) ◽  
pp. 1015-1023 ◽  
Author(s):  
H. J. Li ◽  
R. L. Conner ◽  
B. D. McCallum ◽  
X. M. Chen ◽  
H. Su ◽  
...  

The hard red winter wheat Tangmai 4 did not develop symptoms of infection following inoculation with powdery mildew (Erysiphe graminis DC. f. sp. tritici E. Marchal) isolates from regions of western Canada and northern China. Tangmai 4 exhibited resistance to stem rust (Puccinia graminis Pers. f. sp. tritici Eriks. & Henn.) and leaf rust (P. triticina Eriks.) races from western Canada. This wheat line was resistant to individual stripe rust (P. striiformis Westend. f. sp. tritici Eriks.) races from the U.S. and Canada. Sequential C-banding and genomic in situ hybridization (GISH), and electrophoretic analyses of high molecular weight glutenins and gliadins demonstrated that Tangmai 4 carried a pair of T1BL·1RS wheat-rye (Secale cereale L.) translocated chromosomes. Since the genes located on T1BL·1RS are no longer effective in controlling powdery mildew and the rust diseases, Tangmai 4 must carry additional genes for resistance to these diseases, which makes it a valuable resource for the improvement of resistance in wheat against these diseases. Key words: T1BL·1RS translocation, disease resistance, sequential C-banding and GISH, glutenin, gliadin


2008 ◽  
Vol 59 (5) ◽  
pp. 421 ◽  
Author(s):  
F. C. Ogbonnaya ◽  
M. Imtiaz ◽  
H. S. Bariana ◽  
M. McLean ◽  
M. M. Shankar ◽  
...  

A collection of 253 synthetic hexaploid wheats (SHWs) produced from 192 Aegilops tauschii accessions and 39 elite durum varieties were studied to identify, characterise, and evaluate potentially untapped diversity of disease resistance in wheat. The diseases for which resistance was sought included cereal cyst nematode (CCN), root lesion nematode (RLN), Stagonospora nodorum blotch (SNB), Septoria tritici blotch (STB), and the 3 rusts, leaf rust, stem rust, and stripe rust, all important diseases of bread wheat worldwide, which can severely reduce wheat yield and quality. The SHWs exhibited a wide spectrum of resistance to the 8 pathogens. The frequency of disease-resistant SHWs ranged from 1% for one species of RLN (Pratylenchus neglectus), 3% and 10% for Septoria nodorum leaf and glume blotch, 10% for seedling resistance to yellow leaf spot, 16% for CCN, 21% for the second species of RLN (Pratylenchus thornei), 73% for Septoria tritici blotch, and 15%, 40%, and 24% for leaf rust, stem rust, and stripe rust, respectively. Five SHWs, Aus26860, Aus30258, Aus30294, Aus30301, and Aus30304, exhibited high levels of resistance to CCN, YLP, STB, LR, and SR, while 56 SHWs showed resistance to either 3 or 4 diseases. The genetics of resistance to CCN in some of the SHWs revealed that some of the accessions carry the same CCN gene(s) against pathotype Ha13, while others may carry different resistance gene(s). Additional studies were carried out to understand the relationship between the resistances identified in SHWs and the ones already present in common wheat, in particular the resistance genes Cre1 and Cre3 against CCN. The use of perfect markers associated with Cre1 and Cre3 suggested that some SHWs may carry a new CCN resistance gene(s), which could be deployed in breeding programs to increase the diversity of available resistance. The identification of SHWs with resistance to a range of diseases provides an opportunity to generate genetic knowledge and resistant germplasm to be used in future variety development.


Genome ◽  
1993 ◽  
Vol 36 (3) ◽  
pp. 476-482 ◽  
Author(s):  
H. S. Bariana ◽  
R. A. McIntosh

Inheritance studies showed that the VPM1-derived seedling resistances to stem rust, stripe rust, leaf rust, and powdery mildew were controlled by single genes; the genes for rust resistance were designated Sr38, Yr17, and Lr37, respectively, whereas the gene for resistance to powdery mildew was postulated to be Pm4b. Sr38, Yr17, and Lr37 were shown to be closely linked and distally located in the short arm of chromosome 2A. They showed very close repulsion linkage with Lr17 and were genetically independent of other genes known to be located in chromosome 2A. Previously unmapped, Yr1 appeared to be distally located in the long arm of chromosome 2A.Key words: stem rust, stripe rust, leaf rust, powdery mildew, monosomic analysis, telocentric mapping, genetic linkage.


2011 ◽  
Vol 59 (3) ◽  
pp. 241-248 ◽  
Author(s):  
G. Vida ◽  
M. Cséplő ◽  
G. Gulyás ◽  
I. Karsai ◽  
T. Kiss ◽  
...  

Among the factors which determine yield reliability an important role is played by disease resistance. One of the breeding aims in the Martonvásár institute is to develop wheat varieties with resistance to major diseases. The winter wheat varieties bred in Martonvásár are examined in artificially inoculated nurseries and greenhouses for resistance to economically important pathogens. The effectiveness of designated genes for resistance to powdery mildew and leaf rust has been monitored over a period of several decades. None of the designated major resistance genes examined in greenhouse tests is able to provide complete resistance to powdery mildew; however, a number of leaf rust resistance genes provide full protection against pathogen attack (Lr9, Lr19, Lr24, Lr25, Lr28 and Lr35). In the course of marker-assisted selection, efficient resistance genes (Lr9, Lr24, Lr25 and Lr29) have been incorporated into Martonvásár wheat varieties. The presence of Lr1, Lr10, Lr26, Lr34 and Lr37 in the Martonvásár gene pool was identified using molecular markers. New sources carrying alien genetic material have been tested for powdery mildew and leaf rust resistance. Valuable Fusarium head blight resistance sources have been identified in populations of old Hungarian wheat varieties. Species causing leaf spots (Pyrenophora tritici-repentis, Septoria tritici and Stagonospora nodorum) have gradually become more frequent over the last two decades. Tests on the resistance of the host plant were begun in Martonvásár four years ago and regular greenhouse tests on seedlings have also been initiated.


2010 ◽  
Vol 61 (12) ◽  
pp. 1036 ◽  
Author(s):  
J. Zhang ◽  
C. R. Wellings ◽  
R. A. McIntosh ◽  
R. F. Park

Seedling resistances to stem rust, leaf rust and stripe rust were evaluated in the 37th International Triticale Screening Nursery, distributed by the International Wheat and Maize Improvement Centre (CIMMYT) in 2005. In stem rust tests, 12 and 69 of a total of 81 entries were postulated to carry Sr27 and SrSatu, respectively. When compared with previous studies of CIMMYT triticale nurseries distributed from 1980 to 1986 and 1991 to 1993, the results suggest a lack of expansion in the diversity of stem rust resistance. A total of 62 of 64 entries were resistant to five leaf rust pathotypes. In stripe rust tests, ~93% of the lines were postulated to carry Yr9 alone or in combination with other genes. The absence of Lr26 in these entries indicated that Yr9 and Lr26 are not genetically associated in triticale. A high proportion of nursery entries (63%) were postulated to carry an uncharacterised gene, YrJackie. The 13 lines resistant to stripe rust and the 62 entries resistant to leaf rust represent potentially useful sources of seedling resistance in developing new triticale cultivars. Field rust tests are needed to verify if seedling susceptible entries also carry adult plant resistance.


2005 ◽  
Vol 85 (2) ◽  
pp. 93-100 ◽  
Author(s):  
BEAT KELLER ◽  
CATHERINE FEUILLET ◽  
NABILA YAHIAOUI

The genome of bread wheat is hexaploid and contains 1·6×1010 bp of DNA, of which more than 80% is repetitive sequences. Its size and complexity represent a challenge for the isolation of agronomically important genes, for which we frequently know only their position on the genetic map. Recently, new genomic resources and databases from genome projects have simplified the molecular analysis of the wheat genome. The first genes to be isolated from wheat by map-based cloning include three resistance genes against the fungal diseases powdery mildew and leaf rust. In this review, we will describe the approaches and resources that have contributed to this progress, and discuss genomic strategies that will simplify positional cloning in wheat in the near future.


2011 ◽  
Vol 123 (4) ◽  
pp. 615-623 ◽  
Author(s):  
R. Mago ◽  
L. Tabe ◽  
R. A. McIntosh ◽  
Z. Pretorius ◽  
R. Kota ◽  
...  

2019 ◽  
Vol 4 (2) ◽  
pp. 1-10 ◽  
Author(s):  
Gadisa Alemu

Breeding for disease resistance is a central focus of plant breeding programs, as any successful variety must have the complete package of high yield, disease resistance, agronomic performance, and end - use quality. Wheat breeding is focused on high yield, pathogen resistance and abiotic stress tolerance. Among diseases of wheat yellow rust, stem rust, and leaf rust are the most damaging diseases of wheat and other small grain cereals . Disease resistance in wheat breeding with one exception, the diseases of wheat that is important because of their effect on yield. Resistance to all diseases together can is important to avoid an unexpected loss in effectiveness of the resistance of a cu ltivar to a major disease. The genetic resistance to stem rust, leaf rust and yellow rust can be characterized as qualitative and quantitative resistances. Vertical resistance is specific to pathogen isolates based on single or very few genes. Race - specifi c is used to describe resistance that interacts differentially with pathogen races. Quantitative resistance is defined as resistance that varies in continuous way between the various phenotypes of the host population, from almost imperceptible to quite str ong. With the need to accelerate the development of improved varieties, genomics - assisted breeding is becoming an important tool in breeding programs. With marker - assisted selection, there has been success in breeding for disease resistance. Generally, bre eding programs have successfully implemented molecular markers to assist in the development of cultivars with stem, leaf and stripe rust resistance genes. When new rust resistance genes are to be deployed in wheat breeding programs, it unfortunately takes several years before the new sources of resistance will become available in commercial wheat cultivars. This is due to the long process involved in the establishment of pure breeding wheat lines. Biotechnology based techniques are available to accelerate t he breeding process via doubled haploid production.


Sign in / Sign up

Export Citation Format

Share Document