Cyclopentadienic compounds as intermediates in the thermal degradation of phenols. Kinetics of the thermal decomposition of cyclopentadiene

1972 ◽  
Vol 5 (12) ◽  
pp. 295-300 ◽  
Author(s):  
R. Spielmann ◽  
C. A. Cramers
2017 ◽  
Vol 7 (3) ◽  
pp. 15-21 ◽  
Author(s):  
Михаил Ермоченков ◽  
Mihail Ermochenkov ◽  
Андрей Хроменко ◽  
Andrey Khromenko

Heat treatment is widely used to improve the properties of wood. Such processes include drying and thermal modification. Thermal modification is heating wood without oxygen, accompanied by heat destruction. Thermally modified wood can be used as structural and finishing materials. This puts the task of determining its thermal and physical, physical and chemical, biological, and ornamental properties and their change during heat treatment. The article presents the results of experimental and computational studies of color characteristics of the wood of birch, their change in the process of thermal modification. Thermal decomposition is a complicated multi-stage physical and chemical process. Thermal decomposition of material causes changes in its composition, structure, accompanied by alterations of its properties. Wood can be considered as a multicomponent composite material, consisting of hemicellulose, cellulose, lignin and other components. Each component decomposes in the temperature range that causes the multistage process of thermal degradation. The degree of thermal degradation of the material is determined by the kinetics of occurrence of each stage and the degree of its perfection. Thermal decomposition kinetics of wood can be determined by the results of thermal and gravimetric experiments. In the article the model of determining the color characteristics of wood as a function of the degree of completion of individual stages of thermal degradation is suggested. Model of decomposition of color for RGB components is used for identifying. Color identification of the samples of original birch wood in RGB coordinates was performed. The parameters of thermal effects, allowing to obtain wood with given degree of thermal decomposition are defined. Heat treatment of samples and identification of their color is made. The dependence of RGB parameters from time and intensity of heat treatment is studied. Empirical relations to determine the identifying characteristics of color, as a function of the degree of completion of stages of thermal destruction, in RGB and LAB systems are obtained in explicit form.


2007 ◽  
Vol 4 (2) ◽  
pp. 199-207
Author(s):  
Bennehalli Basavaraju ◽  
Halehatti S. Bhojya Naik

A series of new complexes formed by the interaction of a new ligand Methylquinolino[3,2-b]benzodiazepine (L) with various transition metal ions have been isolated and characterized by elemental analysis and electronic, IR, magnetic moment and conductivity measurements. Thermogravimetric (TG) studies of the complexes have been performed in order to establish the mode of their thermal degradation. The thermal degradation was found to proceed in two steps. The kinetics and thermodynamic parameters were computed from the thermal decomposition data.


1999 ◽  
Vol 121 (1) ◽  
pp. 25-30 ◽  
Author(s):  
A. K. Jain ◽  
S. K. Sharma ◽  
D. Singh

The physical characteristics, proximate analysis, elemental analysis and chemical analysis of paddy husk, an important renewable source of energy, are reported in this paper. The kinetic parameters for the thermal degradation of paddy husk at heating rates of 10 and 100°C min−1 and under atmospheres of air and oxygennitrogen mixture (5:95) have been evaluated from experimentally obtained TGA data. The limitations of the existing TGA models are discussed, and a modified model has been used for correlation of the data.


RSC Advances ◽  
2019 ◽  
Vol 9 (6) ◽  
pp. 3128-3139 ◽  
Author(s):  
Yihan Li ◽  
Zhe Qiang ◽  
Xie Chen ◽  
Jie Ren

The Flynn–Wall–Ozawa method was applied to study the local activation energy of flame retardant thermoset PLA, and the results showed that with an increase of conversion of thermal degradation, the local activation energy was increased slowly.


Materials ◽  
2020 ◽  
Vol 13 (20) ◽  
pp. 4478
Author(s):  
Qiangqiang Liu ◽  
Yubo Chai ◽  
Lin Ni ◽  
Wenhua Lyu

This paper presents experimental research on the flame-retardant properties and thermal decomposition kinetics of wood treated by boric-acid-modified silica sol. The poplar wood was impregnated with pure silica sol and boric-acid-modified silica sol. The results showed that modifiers can be observed in the cell wall and cell lumen. The ignition time, second peak of the heat release rate, total heat release, and mass loss of the W-Si/B were delayed obviously. The composite silicon modification had a positive impact on carbonization. Thermogravimetric analysis showed that the residual mass of W-Si/B was enhanced and the thermal degradation rate was considerably decreased. By thermal decomposition kinetics analysis, the boric acid can catalyze the thermal degradation and carbonization of poplar wood. In other words, wood treated with boric-acid-modified silica sol showed significant improvement in terms of flame retardancy, compared with wood treated with common silica sol.


1967 ◽  
Vol 53 (7) ◽  
pp. 740-743 ◽  
Author(s):  
Kiyoshi SAWAMURA ◽  
Kazuichi MIZOGUCHI ◽  
Tetsuro HANADA ◽  
Kunihiko MAKINO

2016 ◽  
Vol 10 (3) ◽  
pp. 325-328 ◽  
Author(s):  
Bemgba Nyakuma ◽  
◽  
Arshad Ahmad ◽  
Anwar Johari ◽  
Tuan Abdullah ◽  
...  

The study is aimed at investigating the thermal behavior and decomposition kinetics of torrefied oil palm empty fruit bunches (OPEFB) briquettes using a thermogravimetric (TG) analysis and the Coats-Redfern model. The results revealed that thermal decomposition kinetics of OPEFB and torrefied OPEFB briquettes is significantly influenced by the severity of torrefaction temperature. Furthermore, the temperature profile characteristics; Tonset, Tpeak, and Tend increased consistently due to the thermal lag observed during TG analysis. In addition, the torrefied OPEFB briquettes were observed to possess superior thermal and kinetic properties over the untorrefied OPEFB briquettes. It can be inferred that torrefaction improves the fuel properties of pelletized OPEFB for potential utilization in bioenergy conversion systems.


2019 ◽  
Author(s):  
Milad Narimani ◽  
Gabriel da Silva

Glyphosate (GP) is a widely used herbicide worldwide, yet accumulation of GP and its main byproduct, aminomethylphosphonic acid (AMPA), in soil and water has raised concerns about its potential effects to human health. Thermal treatment processes are one option for decontaminating material containing GP and AMPA, yet the thermal decomposition chemistry of these compounds remains poorly understood. Here, we have revealed the thermal decomposition mechanism of GP and AMPA by applying computational chemistry and reaction rate theory methods. <br>


Sign in / Sign up

Export Citation Format

Share Document