Differential resistance to tuber late blight in potato cultivars without R-genes

1991 ◽  
Vol 34 (1) ◽  
pp. 3-8 ◽  
Author(s):  
T. Bjor ◽  
K. Mulelid
2011 ◽  
Vol 9 (2) ◽  
pp. 309-312 ◽  
Author(s):  
Ekaterina Sokolova ◽  
Artem Pankin ◽  
Maria Beketova ◽  
Maria Kuznetsova ◽  
Svetlana Spiglazova ◽  
...  

New races of Phytophthora infestans rapidly defeat potato late blight (LB) resistance based on Solanum demissum germplasm, and breeders search for new sources of durable LB resistance. We developed and verified six sequence characterized amplified region markers recognizing the race-specific genes R1 and R3 of S. demissum and the broad-spectrum resistance gene RB of S. bulbocastanum and the germplasms of these species and used them to screen 209 accessions of 21 wild Solanum species. In addition to S. demissum, homologues of R1 and R3 were found in several species of series Demissa,Longipedicellata and diploid Tuberosa; R3 homologues were also detected in S. bulbocastanum,S. cardiophyllum and S. ehrenbergii. The RB homologues were found in a wider range of Solanum species. The markers of R1 and R3 genes reliably discerned between germplasms of S. tuberosum ssp. tuberosum and wild sources of LB resistance. Following introgression, the species-specific markers of demissum and bulbocastanum germplasm were rapidly lost, whereas the markers of R1 and R3 genes lasted through several meiotic generations and were maintained at high frequencies in modern potato cultivars. The presence of these markers in demissoid potato cultivars was significantly associated with LB resistance, presuming that both genes contribute to overall defence response.


Plant Disease ◽  
2006 ◽  
Vol 90 (1) ◽  
pp. 24-32 ◽  
Author(s):  
M. C. Becktell ◽  
C. D. Smart ◽  
C. H. Haney ◽  
W. E. Fry

Late blight, caused by the pathogen Phytophthora infestans, is a devastating disease of potato and tomato, but can also damage other solanaceous hosts. To gain a better understanding of the interaction between P. infestans and these other hosts, the susceptibility of species in three solanaceous genera was investigated. Of the 10 Calibrachoa × hybridus cultivars tested, four were susceptible and six were resistant to the pathogen; susceptible cultivars supported only very limited growth of P. infestans. The majority of the Petunia × hybrida (petunia) cultivars were susceptible, although less so than susceptible potatoes or tomatoes. Two petunia cultivars displayed differential resistance, suggesting the presence of R genes against P. infestans. The hypersensitive response was present in susceptible, partially resistant, and resistant petunia-P. infestans interactions, but was predominant in the resistant interaction. Young petunias (3 weeks) were more susceptible than older petunias (7 weeks). Nicotiana benthamiana was susceptible to all four P. infestans isolates tested in the lab and became infected during a field epidemic. Several of these isolates were tested for the presence of the inf1 gene, and were found to have and express the gene in vitro. In addition, culture filtrate from these isolates contained 10-kDa proteins and also elicited the hypersensitive response in Nicotiana tabacum and N. benthamiana.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Nam Phuong Kieu ◽  
Marit Lenman ◽  
Eu Sheng Wang ◽  
Bent Larsen Petersen ◽  
Erik Andreasson

AbstractThe use of pathogen-resistant cultivars is expected to increase yield and decrease fungicide use in agriculture. However, in potato breeding, increased resistance obtained via resistance genes (R-genes) is hampered because R-gene(s) are often specific for a pathogen race and can be quickly overcome by the evolution of the pathogen. In parallel, susceptibility genes (S-genes) are important for pathogenesis, and loss of S-gene function confers increased resistance in several plants, such as rice, wheat, citrus and tomatoes. In this article, we present the mutation and screening of seven putative S-genes in potatoes, including two DMR6 potato homologues. Using a CRISPR/Cas9 system, which conferred co-expression of two guide RNAs, tetra-allelic deletion mutants were generated and resistance against late blight was assayed in the plants. Functional knockouts of StDND1, StCHL1, and DMG400000582 (StDMR6-1) generated potatoes with increased resistance against late blight. Plants mutated in StDND1 showed pleiotropic effects, whereas StDMR6-1 and StCHL1 mutated plants did not exhibit any growth phenotype, making them good candidates for further agricultural studies. Additionally, we showed that DMG401026923 (here denoted StDMR6-2) knockout mutants did not demonstrate any increased late blight resistance, but exhibited a growth phenotype, indicating that StDMR6-1 and StDMR6-2 have different functions. To the best of our knowledge, this is the first report on the mutation and screening of putative S-genes in potatoes, including two DMR6 potato homologues.


2021 ◽  
Vol 12 ◽  
Author(s):  
Fang Wang ◽  
Meiling Zou ◽  
Long Zhao ◽  
Zhiqiang Xia ◽  
Jian Wang

Uncovering the genetic basis and optimizing the late blight tolerance trait in potatoes (Solanum tuberosum L.) are crucial for potato breeding. Late blight disease is one of the most significant diseases hindering potato production. The traits of late blight tolerance were evaluated for 284 potato cultivars to identify loci significantly associated with the late blight tolerance trait. Of all, 37 and 15 were the most tolerant to disease, and 107 and 30 were the most susceptible. A total of 22,489 high-quality single-nucleotide polymorphisms and indels were identified in 284 potato cultivars. All the potato cultivars were clustered into eight subgroups using population structure analysis and principal component analysis, which were consistent with the results of the phylogenetic tree analysis. The average genetic diversity for all 284 potato cultivars was 0.216, and the differentiation index of each subgroup was 0.025–0.149. Genome-wide linkage disequilibrium (LD) analysis demonstrated that the average LD was about 0.9 kb. A genome-wide association study using a mixed linear model identified 964 loci significantly associated with the late blight tolerance trait. Fourteen candidate genes for late blight tolerance traits were identified, including genes encoding late blight tolerance protein, chitinase 1, cytosolic nucleotide-binding site–leucine-rich repeat tolerance protein, protein kinase, ethylene-responsive transcription factor, and other potential plant tolerance-related proteins. This study provides novel insights into the genetic architecture of late blight tolerance traits and will be helpful for late blight tolerance in potato breeding.


2007 ◽  
Vol 84 (5) ◽  
pp. 385-392 ◽  
Author(s):  
Mateo Armando Cadena-Hinojosa ◽  
Margarita Díaz-Valasis ◽  
Remigio A. Guzmán-Plazola ◽  
Sylvia Fernández-Pavía ◽  
Niklaus J. Grünwald

2012 ◽  
Vol 55 (2) ◽  
pp. 125-134 ◽  
Author(s):  
A. K. Lees ◽  
J. A. Stewart ◽  
J. S. Lynott ◽  
S. F. Carnegie ◽  
H. Campbell ◽  
...  

1995 ◽  
Vol 38 (2) ◽  
pp. 171-178 ◽  
Author(s):  
B. P. Singh ◽  
S. K. Bhattacharyya

Plant Disease ◽  
2011 ◽  
Vol 95 (7) ◽  
pp. 839-846 ◽  
Author(s):  
Jorge Ulises Blandón-Díaz ◽  
Gregory A. Forbes ◽  
Jorge L. Andrade-Piedra ◽  
Jonathan E. Yuen

In this study, the adequacy of the late blight simulation model LATEBLIGHT (version LB2004) was evaluated under Nicaraguan conditions. During 2007 to 2008, five field experiments were conducted in three potato-production regions in northern Nicaragua. Two susceptible (‘Cal White’ and ‘Granola’) and one resistant (‘Jacqueline Lee’) potato cultivars were evaluated without use of fungicides and with three application intervals (4, 7, and 14 days) of the fungicide chlorothalonil. The simulation model was considered adequate because it accurately predicted high disease severity in susceptible cultivars without fungicide protection, and demonstrated a decrease in the disease progress curves with additional fungicide applications, similar to that observed in the plots. The model also generally predicted inadequate fungicide control, even with a 4-day spray interval, which also occurred in the field. Lack of adequate fungicide protection would indicate the need for cultivars with higher levels of durable resistance, and that farmers should consider more effective fungicides applications (higher dosages or different chemistries) if susceptible cultivars are used.


Sign in / Sign up

Export Citation Format

Share Document