Effect of oxygen and hydrogen sulfide on carbon dioxide corrosion of welded structures of oil and gas installations

2000 ◽  
Vol 36 (2) ◽  
pp. 125-130 ◽  
Author(s):  
V. D. Makarenko ◽  
S. P. Shatilo ◽  
Kh. Kh. Gumerskii ◽  
V. A. Belyaev
2021 ◽  
Vol 87 (12) ◽  
pp. 36-41
Author(s):  
A. S. Fedorov ◽  
E. L. Alekseeva ◽  
A. A. Alkhimenko ◽  
N. O. Shaposhnikov ◽  
M. A. Kovalev

Carbon dioxide (CO2) corrosion is one of the most dangerous types of destruction of metal products in the oil and gas industry. The field steel pipelines and tubing run the highest risk. Laboratory tests are carried out to assess the resistance of steels to carbon dioxide corrosion. However, unified requirements for certain test parameters are currently absent in the regulatory documentation. We present the results of studying the effect of the parameters of laboratory tests on the assessment of the resistance of steels to CO2 corrosion. It is shown that change in the parameters of CO2 concentration, chemical composition of the water/brine system, the buffer properties and pH, the roughness of the sample surface, etc., even in the framework of the same laboratory technique, can lead in different test results. The main contribution to the repeatability and reproducibility of test results is made by the concentration of CO2, pH of the water/brine system, and surface roughness of the samples. The results obtained can be used in developing recommendations for the choice of test parameters to ensure a satisfactory convergence of the results gained in different laboratories, as well as in elaborating of a unified method for assessing the resistance of steels to carbon dioxide corrosion.


CORROSION ◽  
2005 ◽  
Vol 61 (11) ◽  
pp. 1086-1097 ◽  
Author(s):  
E. Gulbrandsen ◽  
J. Kvarekvål ◽  
H. Miland

2020 ◽  
Vol 129 (4) ◽  
pp. 14-18
Author(s):  
L. A. Magadova ◽  
◽  
K. A. Poteshkina ◽  
V. D. Vlasova ◽  
M. S. Pilipenko ◽  
...  

The effect of carbon dioxide corrosion on the pipeline transport system and its protection methods are considered in this article. The corrosion inhibitors represented by imidazoline-based compositions and industrial samples of corrosion inhibitors are used as protective reagents, and the model of produced water saturated with carbon dioxide is used as an aggressive environment. The protective properties of inhibitors and the corrosion rate were evaluated by gravimetric analysis. The paper presents the results of the study of industrial samples and inhibitory compositions developed on the basis of the REC “Promyslovaya himiya”. According to the results of the work, a positive effect of additives of nonionic surfactants on the protective properties of inhibitors was noted.


2021 ◽  
Vol 64 (11) ◽  
pp. 793-801
Author(s):  
R. R. Kantyukov ◽  
D. N. Zapevalov ◽  
R. K. Vagapov

At the present stage of gas field development, the products of many mining facilities have increased content of corrosive CO2 . The corrosive effect of CO2 on steel equipment and pipelines is determined by the conditions of its use. CO2 has a potentially wide range of usage at oil and gas facilities for solving technological problems (during production, transportation, storage, etc.). Simulation tests and analysis were carried out to assess the corrosion effect of CO2 on typical steels (carbon, low-alloy and alloyed) used at field facilities. Gas production facilities demonstrate several corrosion formation zones: lower part of the pipe (when moisture accumulates) and top of the pipe (in case of moisture condensation). The authors have analyzed the main factors influencing the intensity of carbon dioxide corrosion processes at hydrocarbon production with CO2 , its storage and use for various technological purposes. The main mechanism for development of carbon dioxide corrosion is presence/condensation of moisture, which triggers the corrosion process, including the formation of local defects (pits, etc.). X-ray diffraction was used for the analysis of corrosion products formed on the steel surface, which can have different protective characteristics depending on the phase state (amorphous or crystalline).


2021 ◽  
Vol 225 ◽  
pp. 05001
Author(s):  
Vladimir Vigdorovich ◽  
Liudmila Tsygankova ◽  
Natalia Shel ◽  
Nedal Alshikha

The universality of inhibitors is understood as their ability to inhibit several types of corrosion attack: hydrogen sulfide and carbon dioxide corrosion, hydrogen diffusion into metal, development of sulfate-reducing and other types of bacteria, negative impact on the mechanical properties of metals. Indicators of universalism of new inhibitor have been studied. Producer of the inhibiting compositions is Limited Liability Company «INCORGAZ» (S-Petersburg, Russia). The efficacy of the inhibitor in the concentration of 25 - 200 mg/L has been studied with respect to carbon steel in a highly mineralized chloride medium (pH= 6) and NACE medium (5 g/L NaCl, 0.25 g/L CH3COOH, pH =3.5) containing H2S (50-400 mg/L) and CO2 (1at) separately and together. The bactericidal properties of the inhibitor were studied with respect to sulfate-reducing bacteria in the Postgate medium. The investigations were carried out by the methods of linear polarization resistance, electrochemical impedance spectroscopy, gravimetry, potentiodynamic polarization. The protective effectiveness of the inhibitor reaches 80% in the presence of CO2 and 90% in hydrogen sulphide environments. The inhibitor repeatedly reduces the number of sulfate-reducing bacteria and the production of biogenic hydrogen sulfide and inhibits the diffusion of hydrogen into steel.


2021 ◽  
Author(s):  
Valeriya Eduardovna Tkacheva ◽  
Andrey Nicolaevich Markin ◽  
Ignaty Andreevich Markin ◽  
Alexandr Yuryevich Presnyakov

Abstract Complications associated with a corrosive environment, according to Rosneft's data as of 01.01.2020, are among the prevailing at oil and gas production facilities and rank fourth among other factors complicating production - 12% the complicated mechanized wells. Failures due to corrosion are the second largest complicating factors. Based on the results of approbation, the article proposes a method for calculating the maximum rate of local carbon dioxide corrosion, applicable in oilfield conditions, including to complicated stocks of oil wells and pipelines of oil gathering systems. Based on the approbation results, a method for calculating the maximum rate of local carbon dioxide corrosion, applicable in oilfield conditions, including to complicated stocks of oil wells and oil gathering pipelines systems is proposed in the article. The proposed technique is realizable according to the results one of "traditional" methods the corrosion monitoring - weight (or gravimetric). The approbation results and application possibility the technique in the pilot tests process in assessing the protective ability of corrosion inhibitors and the selection the effective dosages in relation to local damages, which are the main cause the oilfield equipment failures according the factor "Corrosive aggressiveness" (one of the complicating factors in terms of gradation, adopted in the Rosneft Company regulations). On practical examples the oilfield equipment operation, the results of corrosion monitoring and the summary statistics the corrosive stock of wells (using the example of an oil Company), the current situation with respect to this type of complication and relevance the issue under consideration is shown.


Sign in / Sign up

Export Citation Format

Share Document