Calculating the parameters of the thermal drilling process

1969 ◽  
Vol 5 (1) ◽  
pp. 26-31 ◽  
Author(s):  
A. P. Dmitriev ◽  
I. D. Kill' ◽  
A. D. Sukhanov ◽  
O. N. Tret'yakov
2019 ◽  
Vol 236 ◽  
pp. 117711 ◽  
Author(s):  
R. Kumar ◽  
N. Rajesh Jesudoss Hynes ◽  
Catalin Iulian Pruncu ◽  
J. Angela Jennifa Sujana

Author(s):  
R Kumar ◽  
N Rajesh Jesudoss Hynes

Thermal drilling is a novel chipless sheet metal drilling process that uses a rotating thermal drill tool to pierce and form a bushing shape hole. In this work, thermal drilling process is successfully employed to drill the DP 600 grade–type galvanized steel with a thickness of 2 mm. The influence of different spindle rotational speeds such as 1600, 2000 and 2400 r/min on the formation of bushing height, surface roughness, microhardness and microstructure of the thermal-drilled holes are investigated in detail. Process parameters such as feed rate, thermal drill angle and workpiece thickness were held constant in order to explore the influence of rotational speed on the quality characteristics of the thermal drilling process. It has been found that the bushing height was improved with increasing of rotational speed, but the petal formation at the outer edge of the bush is decreased. Surface roughness tests indicate that the better surface quality drilled hole could be obtained at the highest rotational speed of 2400 r/min. The microstructural investigation confirmed that a new result of Lüders band marks was formed inside the thermal-drilled holes because high thermal stress and yielding of galvanized steel material.


2016 ◽  
Vol 150 ◽  
pp. 746-752 ◽  
Author(s):  
P.V. Shalamov ◽  
I.A. Kulygina ◽  
E.N. Yaroslavova

2019 ◽  
Vol 12 (3) ◽  
pp. 16-26
Author(s):  
Victor V. Kharitonov

Three first-year ice ridges have been examined with respect to geometry and morphology in landfast ice of Shokal'skogo Strait (Severnaya Zemlya Archipelago) in May 2018. Two of the studied ice ridges were located on the edge of the ridged field and were part of it, because their keels extended for a long distance deep into this field. Ice ridges characteristics are discussed in the paper. These studies were conducted using hot water thermal drilling with computer recording of the penetration rate. Boreholes were drilled along the cross-section of the ridge crest at 0.25 m intervals. Cross-sectional profiles of ice ridges are illustrated. The maximal sail height varied from 2.9 up to 3.2 m, the maximal keel depth varied from 8.5 up to 9.6 m. The average keel depth to sail height ratio varied from 2.8 to 3.3, and the thickness of the consolidated layer was 2.5-3.5 m. The porosity of the non-consolidated part of the keel was about 23-27%. The distributions of porosity versus depth for all ice ridges are presented.


2019 ◽  
Vol 3 (2) ◽  
pp. 111-118
Author(s):  
Bahtiar Wilantara ◽  
Raharjo Raharjo

This study aims to develop an analog compression tester measuring instrument into a digital compression tester as a measurement tool that can provide effectiveness and efficiency to users.                     This research is a research and development or R&D. This research was conducted in several steps, namely: problem identification, information gathering, product design, product manufacture, expert validation, product revision, testing, final production. The development of analog compression tester was first validated by material experts, media experts, and 15 students, and 5 students for field trials. The subjects of this study were vocational students at Taman Karya Madya Teknik Kebumen. Data collection techniques used in this study using instruments in the form of a questionnaire. The data analysis technique of this research is descriptive qualitative and quantitative descriptive percentage.                 The results of the development of digital compression tester designs are: 1) the tools and materials used are electric drill, grinding, cutter, goggles, gloves, masks, ruler, acetaminine welding, screwdriver, scissors, digital dial pressure gauge, hose, spark plugs, clamps , and nepel, 2) the manufacturing process that starts from the cutting process, the hole drilling process, the welding process and the process of connecting between components, 3) the workings of digital compression tester design that is reading the pressure or compression of the machine displayed on the monitor digitally using dial pressure digital gauge, 4) the test results obtained from the validation results from: a) material experts at 89% or Eligible; b) media experts at 85% or reasonable; c) response of field trial students in terms of ease of use and reading of 90% or feasible. Thus, the conclusion that the digital compression tester measuring instrument declared feasible to use for measurement.


Sign in / Sign up

Export Citation Format

Share Document