PENGEMBANGAN ALAT UKUR COMPRESSION TESTER

2019 ◽  
Vol 3 (2) ◽  
pp. 111-118
Author(s):  
Bahtiar Wilantara ◽  
Raharjo Raharjo

This study aims to develop an analog compression tester measuring instrument into a digital compression tester as a measurement tool that can provide effectiveness and efficiency to users.                     This research is a research and development or R&D. This research was conducted in several steps, namely: problem identification, information gathering, product design, product manufacture, expert validation, product revision, testing, final production. The development of analog compression tester was first validated by material experts, media experts, and 15 students, and 5 students for field trials. The subjects of this study were vocational students at Taman Karya Madya Teknik Kebumen. Data collection techniques used in this study using instruments in the form of a questionnaire. The data analysis technique of this research is descriptive qualitative and quantitative descriptive percentage.                 The results of the development of digital compression tester designs are: 1) the tools and materials used are electric drill, grinding, cutter, goggles, gloves, masks, ruler, acetaminine welding, screwdriver, scissors, digital dial pressure gauge, hose, spark plugs, clamps , and nepel, 2) the manufacturing process that starts from the cutting process, the hole drilling process, the welding process and the process of connecting between components, 3) the workings of digital compression tester design that is reading the pressure or compression of the machine displayed on the monitor digitally using dial pressure digital gauge, 4) the test results obtained from the validation results from: a) material experts at 89% or Eligible; b) media experts at 85% or reasonable; c) response of field trial students in terms of ease of use and reading of 90% or feasible. Thus, the conclusion that the digital compression tester measuring instrument declared feasible to use for measurement.

2020 ◽  
Vol 87 (12) ◽  
pp. 757-767
Author(s):  
Robert Wegert ◽  
Vinzenz Guski ◽  
Hans-Christian Möhring ◽  
Siegfried Schmauder

AbstractThe surface quality and the subsurface properties such as hardness, residual stresses and grain size of a drill hole are dependent on the cutting parameters of the single lip deep hole drilling process and therefore on the thermomechanical as-is state in the cutting zone and in the contact zone between the guide pads and the drill hole surface. In this contribution, the main objectives are the in-process measurement of the thermal as-is state in the subsurface of a drilling hole by means of thermocouples as well as the feed force and drilling torque evaluation. FE simulation results to verify the investigations and to predict the thermomechanical conditions in the cutting zone are presented as well. The work is part of an interdisciplinary research project in the framework of the priority program “Surface Conditioning in Machining Processes” (SPP 2086) of the German Research Foundation (DFG).This contribution provides an overview of the effects of cutting parameters, cooling lubrication and including wear on the thermal conditions in the subsurface and mechanical loads during this machining process. At first, a test set up for the in-process temperature measurement will be presented with the execution as well as the analysis of the resulting temperature, feed force and drilling torque during drilling a 42CrMo4 steel. Furthermore, the results of process simulations and the validation of this applied FE approach with measured quantities are presented.


1970 ◽  
Vol 68 (2) ◽  
pp. 221-232 ◽  
Author(s):  
R. J. Gilbert

SUMMARYThere is no official scheme for testing disinfectants and detergent/disinfectants for use in the retail food trade and few recommended procedures have been given for the cleaning of equipment with these agents. Therefore, field trials were carried out in a large self-service store. Comparisons were made of the various cleaning efficiencies, as determined by bacterial plate counts, of detergent and disinfectant solutions and machine cleaning oils applied with either clean cloths or disposable paper towels to items of equipment. The most satisfactory results were always obtained when anionic detergent (0·75 % w/v) and hypochlorite (200 p.p.m. available chlorine) solutions were applied in a ‘two-step’ procedure.Tests were made to compare the calcium alginate swab-rinse and the agar sausage (Agaroid) techniques for the enumeration of bacteria on stainless steel, plastic, formica and wooden surfaces before and after a cleaning process. Although recovery rates were always greater by the swab-rinse technique, the agar sausage technique was considered to be a useful routine control method for surface sampling.


Author(s):  
Aditya Thadani ◽  
Athamaram H. Soni

Abstract Experimental and theoretical research data was utilized in building a Fuzzy Logic Controller model applied to simulate the drilling process of composite materials. The objective is to have a better understanding and control of delamination of composites during the drilling process and at the same time to improve the hole finish by controlling fraying and splintering. By controlling the main issues in the drilling process such as feed rate, cutting speed, thrust force, and torque generated in addition to the tool geometry, it is possible to optimize the drilling process avoiding the conventionally encountered problems.


2022 ◽  
Vol 6 (1) ◽  
pp. 7
Author(s):  
Menghui Zhu ◽  
Chao Wei ◽  
Wei Guo ◽  
Zhizhou Zhang ◽  
Jinglei Ouyang ◽  
...  

Although laser drilling of carbon fibre-reinforced polymer (CFRP) composites offers the advantages of zero tool-wear and avoidance of fibre delamination compared with mechanical drilling, it consumes considerably more energy during the drilling process. This research shows that by using a new, stepped parameter parallel ring laser hole drilling method, an energy saving of 78.10% and an 18.37 gCO2 reduction for each hole, while improving productivity by more than 300%, can be achieved in laser drilling of 6 mm diameter holes in CFRP sheets of 2 mm in thickness, compared with previous laser drilling methods under the same drilling quality. The key reason for this is an increase in energy input to the inner rings enabling more rapid removal of the material, while the lower energy input for the outer ring provides a shielding trench to reduce the heat loss into the parent material. The results are compared with single-ring laser drilling and multiple-ring laser drilling with constant processing parameters, and a discussion is given on comparing with mechanical drilling and future prospects, including a combined mechanical drilling and laser pre-scribing process.


Procedia CIRP ◽  
2021 ◽  
Vol 104 ◽  
pp. 1924-1929
Author(s):  
Yue Si ◽  
Xuyang Li ◽  
Lingfei Kong ◽  
Jianming Zhen ◽  
Yan Li

2019 ◽  
Vol 15 (1) ◽  
pp. 11
Author(s):  
NFN Tasliah ◽  
NFN Ma'sumah ◽  
Joko Prasetiyono

<p>Rice lines for increasing grain yield derived from Code variety that have loci associated to the spikelet number and early heading date (qTSN4 and qDTH8 locus, respectively) have been developed. The objectives of this research were to molecularly analyze, to evaluate the yield of Code-qTSN4 and Code-qDTH8 lines in the field, and to obtain the lines with yield potential of at least 10% higher than that shown by Code. The study was conducted in October 2016 to March 2017. The study was divided into two activities: molecular verification of the qTSN4, qDTH8, and Xa7 loci using specific markers and field trials at two locations in West Java, i.e. Sukamandi Experimental Station and Cianjur farmer’s paddy field. The genetic materials used were 56 rice genotypes consisted of 49 lines (Code-qTSN4 and Code-qDTH8) and 7 check varieties. Molecular analysis showed that all rice lines tested contained qTSN4, qDTH8, and Xa7 loci. All of the loci were in homozygous stage indicating that they were pure lines. Field trial results showed that Cianjur location gave much better on yield component variables than that in Sukamandi. The highest increase in spikelet number was shown by B6-4 planted at Cianjur with increase of 30.06% and B12-2 planted at Sukamandi with increase of 25.15% compared to Code. Both lines were classified as Code-qTSN4 line group. The qTSN4 and qDTH8 loci proved to increase yield more than 20% compared to Code. A total of 34 lines resulted from this study can be used for advanced yield trials conducted at several agro-ecologically different locations.</p>


2011 ◽  
Vol 291-294 ◽  
pp. 1952-1956 ◽  
Author(s):  
Xue Liang Bi ◽  
Jian Wang ◽  
Zhan Lin Wang ◽  
Shi Hui Sun

In the drilling process, axial vibration, transverse vibration and torsional vibration happen to drilling string. And the coupled vibration is more complex. In the resonance state, drilling string collides with the wall, which causes serious damage on drilling string in a short time and results in economic loss to the drilling operation. In this paper, the regularity of coupled vibration is analyzed by using finite element method. The model of full-hole drilling strings is established. The distribution regularities of coupled resonant frequency are obtained through computer analysis. The coupled model is more accurate than single vibration model. And the gaps of high rotary speed resonance regions are larger. Resonance state can be avoided by changing rotary speed, and drilling accidents can be reduced.


2006 ◽  
Author(s):  
Mikael Sjödahl ◽  
Per Gren ◽  
Istvan Sárady ◽  
Natalia Miroshnicova

2015 ◽  
Vol 786 ◽  
pp. 43-47
Author(s):  
M. Faizi ◽  
W.M. Syafiq ◽  
M. Afendi ◽  
N.G. Chuen ◽  
Abu Bakar Shahriman

Automotive industries are looking for new implementation to deliver a good finishing product to their customer. By using adhesive material, joining against two steel can replace normal technique which is welding process. However, the strength produced by this method must be investigated. The failure investigation of ductile adhesive intended for use in automotive tubular frame chassis has been assessed using simple tubular lap shear joint. There are two different overlap lengths of tubular adhesive joint considered in this test, i.e., 15 mm and 45 mm. The materials used for the adherents were stainless steel and mild steel, while adhesive used in the experiments was Araldite Standard 90 minutes epoxy resin. Tensile test by utilizing universal testing machine (UTM) was carried out to determine the shear strength of the adhesive joint in different overlap length. Fatigue tests were also conducted. From the results it is found that longer overlap length of the adhesive is preferable for use in automotive tubular frame chassis due to higher failure load it can withstand and better fatigue life.


Sign in / Sign up

Export Citation Format

Share Document