High-frequency gravitational radiation by the normal modes of crystalline solids

1976 ◽  
Vol 35 (1) ◽  
pp. 61-69 ◽  
Author(s):  
F. Sacchetti ◽  
D. Trevese
2019 ◽  
Vol 04 (02) ◽  
pp. 1950002 ◽  
Author(s):  
Ivan P. Lobzenko

Properties of discrete breathers are discussed from two points of view: (I) the ab initio modeling in graphene and (II) classical molecular dynamics simulations in the ace-centered cubic (fcc) Ni. In the first (I) approach, the possibility of exciting breathers depends on the strain applied to the graphene sheet. The uniaxial strain leads to opening the gap in the phonon band and, therefore, the existence of breathers with frequencies within the gap. In the second (II) approach, the structure of fcc Ni supports breathers of another kind, which possess a hard nonlinearity type. It is shown that particular high frequency normal mode can be used to construct the breather by means of overlaying a spherically symmetrical function, the maximum of which coincides with the breather core. The approach of breathers excitation based on nonlinear normal modes is independent of the level of approximation. Even though breathers could be obtained both in classical and first-principles calculations, each case has advantages and shortcomings, that are compared in the present work.


1986 ◽  
Vol 64 (2) ◽  
pp. 140-145 ◽  
Author(s):  
Clifford M. Will

The observation of gravitational-radiation damping in the binary pulsar PSR 1913 + 16 and the ongoing experimental search for gravitational waves of extraterrestrial origin have made the theory of gravitational radiation an active branch of classical general relativity. In calculations of gravitational radiation, approximation methods play a crucial role. We summarize recent developments in two areas in which approximations are important: (a) the quadrupole approximation, which determines the energy flux and the radiation reaction forces in weak-field, slow-motion, source-within-the-near-zone systems such as the binary pulsar; and (b) the normal modes of oscillation of black holes, where the Wentzel–Kramers–Brillouin approximation gives accurate estimates of the complex frequencies of the modes.


2007 ◽  
Vol 64 (6) ◽  
pp. 1977-1994 ◽  
Author(s):  
Ulrich Achatz

The primary nonlinear dynamics of high-frequency gravity waves (HGWs) perturbed by their most prominent normal modes (NMs) or singular vectors (SVs) in a rotating Boussinesq fluid have been studied by direct numerical simulations (DNSs), with wave scales and values of viscosity and diffusivity characteristic for the upper mesosphere. The DNS is 2.5D in that it has only two spatial dimensions, defined by the direction of propagation of the HGW and the direction of propagation of the perturbation in the plane orthogonal to the HGW phase direction, but describes a fully 3D velocity field. Many results of the more comprehensive fully 3D simulations in the literature are reproduced. So it is found that statically unstable HGWs are subject to wave breaking ending in a wave amplitude with respect to the overturning threshold near 0.3. It is shown that this is a result of a perturbation of the HGW by its leading transverse NM. For statically stable HGWs, a parallel NM has the strongest effect, quite in line with previous results on the predominantly 2D instability of such HGWs. This parallel mode is, however, not the leading NM but a larger-scale pattern, seemingly driven by resonant wave–wave interactions, leading eventually to energy transfer from the HGW into another gravity wave with steeper phase propagation. SVs turn out to be less effective in triggering HGW decay but they can produce turbulence of a strength that is (as that from the NMs) within the range of measured values, however with a more pronounced spatial confinement.


The quadrupole and octupole contributions to the gravitational radiation flux at null infinity from an initially stationary isolated system are computed in terms of the asymptotic moments defined there. The present treatment incorporates the influence of the background field of the source while still neglecting the nonlinear self-interaction of the radiation. Compared with the flat space result, the new formula predicts a suppression of the contribution from the high-frequency modes for which the frequency ω satisfies GM 0 ω / c 3 ≫ 1, M 0 being the initial mass of the system.


1996 ◽  
Vol 430 ◽  
Author(s):  
K. I. Rybakov ◽  
V. E. Semenov

AbstractResults of the theoretical study of surface effects in ionic crystalline solids under the action of high-frequency electric fields of moderate intensity are presented. The averaged ponderomotive action of the electric field on the charged vacancies within the crystal causes directional mass transport that leads to development of a surface instability. The analysis shows that the proposed effect can result in the formation of a periodic profile on the surface.


Author(s):  
G. G. Swinerd

SynopsisA general formalism for the description of high-frequency gravitational radiation is presented, and a justification is provided for the often made assumption that the energy of an isotropic field of gravitational radiation in a cosmological model may be represented by a perfect fluid.


Sign in / Sign up

Export Citation Format

Share Document