High-energy phase-shift behaviour and the three-body bound state

1971 ◽  
Vol 2 (24) ◽  
pp. 1251-1255 ◽  
Author(s):  
A. Fournier ◽  
L. P. Kok
Author(s):  
N. Osakabe ◽  
J. Endo ◽  
T. Matsuda ◽  
A. Tonomura

Progress in microscopy such as STM and TEM-TED has revealed surface structures in atomic dimension. REM has been used for the observation of surface dynamical process and surface morphology. Recently developed reflection electron holography, which employes REM optics to measure the phase shift of reflected electron, has been proved to be effective for the observation of surface morphology in high vertical resolution ≃ 0.01 Å.The key to the high sensitivity of the method is best shown by comparing the phase shift generation by surface topography with that in transmission mode. Difference in refractive index between vacuum and material Vo/2E≃10-4 owes the phase shift in transmission mode as shownn Fig. 1( a). While geometrical path difference is created in reflection mode( Fig. 1(b) ), which is measured interferometrically using high energy electron beam of wavelength ≃0.01 Å. Together with the phase amplification technique , the vertivcal resolution is expected to be ≤0.01 Å in an ideal case.


1989 ◽  
Vol 40 (8) ◽  
pp. 2654-2661 ◽  
Author(s):  
M. Komachiya ◽  
M. Ukita ◽  
R. Fukuda

1936 ◽  
Vol 32 (3) ◽  
pp. 482-485 ◽  
Author(s):  
R. A. Smith

When an electron makes a transition from a continuous state to a bound state, for example in the case of neutralization of a positive ion or formation of a negative ion, its excess energy must be disposed of in some way. It is usually given off as radiation. In the case of neutralization of positive ions the radiation forms the well-known continuous spectrum. No such spectrum due to the direct formation of negative ions has, however, been observed. This process has been fully discussed in a recent paper by Massey and Smith. It is shown that in this case the spectrum would be difficult to observe.


2003 ◽  
Vol 14 (09) ◽  
pp. 1273-1278 ◽  
Author(s):  
MICHAEL KLASEN

The Feynman diagram generator FeynArts and the computer algebra program FormCalc allow for an automatic computation of 2→2 and 2→3 scattering processes in High Energy Physics. We have extended this package by four new kinematical routines and adapted one existing routine in order to accomodate also two- and three-body decays of massive particles. This makes it possible to compute automatically two- and three-body particle decay widths and decay energy distributions as well as resonant particle production within the Standard Model and the Minimal Supersymmetric Standard Model at the tree- and loop-level. The use of the program is illustrated with three standard examples: [Formula: see text], [Formula: see text], and [Formula: see text].


1998 ◽  
Vol 23 (1-2) ◽  
pp. 87-109 ◽  
Author(s):  
A. Amaya-Tapia ◽  
S. Y. Larsen ◽  
J. Popiel

2016 ◽  
Vol 34 (2) ◽  
pp. 322-329 ◽  
Author(s):  
Wan Q. Cao ◽  
Ling F. Xu ◽  
Mukhlis M. Ismail ◽  
Li L. Huang

AbstractBaTiO3 ceramics doped with 0.40 mol% NaNbO3 were prepared using a traditional approach by sintering at temperature of 1250 °C to 1290 °C. The prepared ceramics was characterized by very good dielectric properties, such as high dielectric constant (1.5 × 105), low dielectric loss (0.1), and good dielectric temperature stability in the −40 °C to 100 °C range for the sample sintered below 1270 °C. The dielectric characteristics obtained with XPS confirmed that Ti4+ ions remain in the state without any change. The huge increase in dielectric constant in NaNbO3 doped BaTiO3 samples occurs when large amount of Ba2+ ions are excited to a high energy bound state of Ba2+ − e or Ba+ to create electron hopping conduction. For samples with the content of NaNbO3 higher than 0.40 mol%, or sintering temperature higher than 1280 °C, compensation effect is dominated by cation vacancies with sharply decreasing dielectric constant and increased dielectric loss. The polaron effect is used to explain the relevant mechanism of giant dielectric constant appearing in the ferroelectric phase.


Sign in / Sign up

Export Citation Format

Share Document