Prime ideals are dense in maximal ideals of continuous functions

1981 ◽  
Vol 30 (1) ◽  
pp. 50-52 ◽  
Author(s):  
George Maltese
2021 ◽  
Vol 22 (1) ◽  
pp. 47
Author(s):  
Amrita Acharyya ◽  
Sudip Kumar Acharyya ◽  
Sagarmoy Bag ◽  
Joshua Sack

<p>For a completely regular Hausdorff topological space X, let C(X, C) be the ring of complex-valued continuous functions on X, let C ∗ (X, C) be its subring of bounded functions, and let Σ(X, C) denote the collection of all the rings that lie between C ∗ (X, C) and C(X, C). We show that there is a natural correlation between the absolutely convex ideals/ prime ideals/maximal ideals/z-ideals/z ◦ -ideals in the rings P(X, C) in Σ(X, C) and in their real-valued counterparts P(X, C) ∩ C(X). These correlations culminate to the fact that the structure space of any such P(X, C) is βX. For any ideal I in C(X, C), we observe that C ∗ (X, C)+I is a member of Σ(X, C), which is further isomorphic to a ring of the type C(Y, C). Incidentally these are the only C-type intermediate rings in Σ(X, C) if and only if X is pseudocompact. We show that for any maximal ideal M in C(X, C), C(X, C)/M is an algebraically closed field, which is furthermore the algebraic closure of C(X)/M ∩C(X). We give a necessary and sufficient condition for the ideal CP (X, C) of C(X, C), which consists of all those functions whose support lie on an ideal P of closed sets in X, to be a prime ideal, and we examine a few special cases thereafter. At the end of the article, we find estimates for a few standard parameters concerning the zero-divisor graphs of a P(X, C) in Σ(X, C).</p>


1975 ◽  
Vol 27 (1) ◽  
pp. 75-87 ◽  
Author(s):  
Andrew Adler ◽  
R. Douglas Williams

Let C(X) be the ring of all real-valued continuous functions on a completely regular topological space X, and let A﹛Y) be the ring of all functions analytic on a connected non-compact Riemann surface F. The ideal theories of these two function rings have been extensively studied since the fundamental papers of E. Hewitt on C﹛X)[12] and of M. Henriksen on the ring of entire functions [10; 11]. Despite the obvious differences between these two rings, it has turned out that there are striking similarities between their ideal theories. For instance, non-maximal prime ideals of A (F) [2; 11] behave very much like prime ideals of C﹛X)[13; 14], and primary ideals of A(Y) which are not powers of maximal ideals [19] resemble primary ideals of C(X) [15]. In this paper we show that there are very good reasons for these similarities. It turns out that much of the ideal theory of A (Y) is a special case of the ideal theory of rings of continuous functions. We develop machinery that enables one almost automatically to derive results about the ideal theory of A(Y) from corresponding known results of ideal theory for rings of continuous functions.


2018 ◽  
Vol 30 (2) ◽  
pp. 513-526 ◽  
Author(s):  
Richard N. Ball ◽  
Vincenzo Marra ◽  
Daniel McNeill ◽  
Andrea Pedrini

AbstractWe use a landmark result in the theory of Riesz spaces – Freudenthal’s 1936 spectral theorem – to canonically represent any Archimedean lattice-ordered groupGwith a strong unit as a (non-separating) lattice-group of real-valued continuous functions on an appropriateG-indexed zero-dimensional compactification{w_{G}Z_{G}}of its space{Z_{G}}ofminimalprime ideals. The two further ingredients needed to establish this representation are the Yosida representation ofGon its space{X_{G}}ofmaximalideals, and the well-known continuous surjection of{Z_{G}}onto{X_{G}}. We then establish our main result by showing that the inclusion-minimal extension of this representation ofGthat separates the points of{Z_{G}}– namely, the sublattice subgroup of{\operatorname{C}(Z_{G})}generated by the image ofGalong with all characteristic functions of clopen (closed and open) subsets of{Z_{G}}which are determined by elements ofG– is precisely the classical projectable hull ofG. Our main result thus reveals a fundamental relationship between projectable hulls and minimal spectra, and provides the most direct and explicit construction of projectable hulls to date. Our techniques do require the presence of a strong unit.


2019 ◽  
Vol 13 (07) ◽  
pp. 2050121
Author(s):  
M. Aijaz ◽  
S. Pirzada

Let [Formula: see text] be a commutative ring with unity [Formula: see text]. The annihilating-ideal graph of [Formula: see text], denoted by [Formula: see text], is defined to be the graph with vertex set [Formula: see text] — the set of non-zero annihilating ideals of [Formula: see text] and two distinct vertices [Formula: see text] and [Formula: see text] adjacent if and only if [Formula: see text]. Some connections between annihilating-ideal graphs and zero divisor graphs are given. We characterize the prime ideals (or equivalently maximal ideals) of [Formula: see text] in terms of their degrees as vertices of [Formula: see text]. We also obtain the metric dimension of annihilating-ideal graphs of commutative rings.


1992 ◽  
Vol 46 (3) ◽  
pp. 449-458 ◽  
Author(s):  
H. Linda Byun ◽  
Lothar Redlin ◽  
Saleem Watson

It is known that the maximal ideals in the rings C(X) and C*(X) of continuous and bounded continuous functions on X, respectively, are in one-to-one correspondence with βX. We have shown previously that the same is true for any ring A(X) between C(X) and C*(X). Here we consider the problem for rings A(X) contained in C*(X) which are complete rings of functions (that is, they contain the constants, separate points and closed sets, and are uniformly closed). For every noninvertible f ∈ A(X), we define a z–filter ZA(f) on X which, in a sense, provides a measure of where f is ‘locally invertible’. We show that the map ZA generates a correspondence between ideals of A(X) and z–filters on X. Using this correspondence, we construct a unique compactification of X for every complete ring of functions. Each such compactification is explicitly identified as a quotient of βX. In fact, every compactification of X arises from some complete ring of functions A(X) via this construction. We also describe the intersections of the free ideals and of the free maximal ideals in complete rings of functions.


2007 ◽  
Vol 75 (3) ◽  
pp. 417-429 ◽  
Author(s):  
Ayman Badawi

Suppose that R is a commutative ring with 1 ≠ 0. In this paper, we introduce the concept of 2-absorbing ideal which is a generalisation of prime ideal. A nonzero proper ideal I of R is called a 2-absorbing ideal of R if whenever a, b, c ∈ R and abc ∈ I, then ab ∈ I or ac ∈ I or bc ∈ I. It is shown that a nonzero proper ideal I of R is a 2-absorbing ideal if and only if whenever I1I2I3 ⊆ I for some ideals I1,I2,I3 of R, then I1I2 ⊆ I or I2I3 ⊆ I or I1I3 ⊆ I. It is shown that if I is a 2-absorbing ideal of R, then either Rad(I) is a prime ideal of R or Rad(I) = P1 ⋂ P2 where P1,P2 are the only distinct prime ideals of R that are minimal over I. Rings with the property that every nonzero proper ideal is a 2-absorbing ideal are characterised. All 2-absorbing ideals of valuation domains and Prüfer domains are completely described. It is shown that a Noetherian domain R is a Dedekind domain if and only if a 2-absorbing ideal of R is either a maximal ideal of R or M2 for some maximal ideal M of R or M1M2 where M1,M2 are some maximal ideals of R. If RM is Noetherian for each maximal ideal M of R, then it is shown that an integral domain R is an almost Dedekind domain if and only if a 2-absorbing ideal of R is either a maximal ideal of R or M2 for some maximal ideal M of R or M1M2 where M1,M2 are some maximal ideals of R.


Algebra ◽  
2013 ◽  
Vol 2013 ◽  
pp. 1-3 ◽  
Author(s):  
Ehsan Momtahan

Gelfand-Naimark's theorem states that every commutative -algebra is isomorphic to a complex valued algebra of continuous functions over a suitable compact space. We observe that for a completely regular space , is dense--separable if and only if is -cogenerated if and only if every family of maximal ideals of with zero intersection has a subfamily with cardinal number less than and zero intersection. This gives a simple characterization of -cogenerated commutative unital -algebras via their maximal ideals.


1974 ◽  
Vol 11 (3) ◽  
pp. 429-441 ◽  
Author(s):  
Anne P. Grams

Let G be an abelian group, and let S be a subset of G. Necessary and sufficient conditions on G and S are given in order that there should exist a Dedekind domain D with class group G with the property that S is the set of classes that contain maximal ideals of D. If G is a torsion group, then S is the set of classes containing the maximal ideals of D if and only if S generates G. These results are used to determine necessary and sufficient conditions on a family {Hλ} of subgroups of G in order that there should exist a Dedekind domain D with class group G such that {G/Hλ} is the family of class groups of the set of overrings of D. Several applications are given.


Sign in / Sign up

Export Citation Format

Share Document