Numerical simulation of the impact of vegetation index on the interannual variation of summer precipitation in the Yellow River Basin

2005 ◽  
Vol 22 (6) ◽  
pp. 865-876 ◽  
Author(s):  
Li Weiping ◽  
Xue Yongkang
Author(s):  
Yu Chen ◽  
Xuyang Su ◽  
Qian Zhou

The outbreak of COVID-19 has prompted consideration of the importance of urban resilience. Based on a multidimensional perspective, the authors of this paper established a comprehensive evaluation indicator system for evaluating urban resilience in the Yellow River basin (YRB), and various methods such as the entropy value method, Theil index, exploratory spatial data analysis (ESDA) model, and geographical detector model were used to measure the spatiotemporal characteristics and influencing factors of urban resilience in the YRB from 2011 to 2018. The results are as follows. (1) From 2011 to 2018, the urban resilience index (URI) of the YRB showed a “V”-shaped dynamic evolution in the time series, and the URI increased by 13.4% overall. The resilience of each subsystem showed the following hierarchical structure: economic resilience > social resilience > ecological resilience > infrastructure resilience. (2) The URI of the three major regions—upstream, midstream, and downstream—increased, and the resilience of each subsystem in the region showed obvious regional characteristics. The comprehensive difference in URI values within the basin was found to be shrinking, and intraregional differences have contributed most to the comprehensive difference. (3) There were obvious zonal differences in the URI from 2011 to 2018. Shandong Peninsula and Hohhot–Baotou–Ordos showed a “High–High” agglomeration, while the southern and southwestern regions showed a “Low–Low” agglomeration. (4) Among the humanist and social factors, economic, fiscal, market, urbanization, openness, and innovation were found to be the factors that exert a high impact on the URI, while the impacts of natural factors were found to be low. The impact of the interaction of each factor is greater than that of a single factor.


2021 ◽  
Vol 69 (1) ◽  
pp. 29-40
Author(s):  
CaiHong Hu ◽  
Guang Ran ◽  
Gang Li ◽  
Yun Yu ◽  
Qiang Wu ◽  
...  

AbstractThe changes of runoff in the middle reaches of the Yellow River basin of China have received considerable attention owing to their sharply decline during recent decades. In this paper, the impacts of rainfall characteristics and land use and cover change on water yields in the Jingle sub-basin of the middle reaches of the Yellow River basin were investigated using a combination of statistical analysis and hydrological simulations. The Levenberg Marquardt and Analysis of Variance methods were used to construct multivariate, nonlinear, model equations between runoff coefficient and rainfall intensity and vegetation coverage. The land use changes from 1971 to 2017 were ascertained using transition matrix analysis. The impact of land use on water yields was estimated using the M-EIES hydrological model. The results show that the runoff during flood season (July to September) decreased significantly after 2000, whereas slightly decreasing trend was detected for precipitation. Furthermore, there were increase in short, intense, rainfall events after 2000 and this rainfall events were more conducive to flood generation. The “Grain for Green” project was carried out in 1999, and the land use in the middle reaches of the Yellow River improved significantly, which make the vegetation coverage (Vc) of the Jingle sub-basin increased by 13%. When Vc approaches 48%, the runoff coefficient decreased to the lowest, and the vegetation conditions have the greatest effect on reducing runoff. Both land use and climate can change the water yield in the basin, but for areas where land use has significantly improved, the impact of land use change on water yield plays a dominant role. The results acquired in this study provide a useful reference for water resources planning and soil and water conservation in the erodible areas of the middle reaches of the Yellow River basin.


2019 ◽  
Vol 2019 ◽  
pp. 1-10 ◽  
Author(s):  
Yang Zhao ◽  
Minzhong Wang ◽  
Jiao Li ◽  
Xiaojun Yang ◽  
Nan Zhang ◽  
...  

The diurnal variations in summer precipitation over the Yellow River Basin (YRB) are investigated based on the National Centers for Environmental Prediction reanalysis dataset and hourly precipitation data from 481 gauge stations over the YRB during the time period 1981–2013. Three stair steps are identified to represent the upper, middle, and lower reaches of the YRB due to complex topography elevations over the different subregions of the YRB. The summer diurnal precipitation over the YRB shows significant spatial and temporal variations. The diurnal peaks in precipitation over the upper and middle reaches of the YRB occur in the evening and late afternoon, respectively. By contrast, double peaks in diurnal precipitation occur in the early morning and late afternoon over the lower reaches of the YRB. The diurnal peaks in summer precipitation along the YRB have an eastward transition, suggested to be associated with the westerlies transporting water vapor. Differing from the increasing tendency of summer hourly precipitation from west to east across the YRB with topography elevations decreased, a distinct reduction in hourly precipitation is observed over the transition region between the first and second stair steps in the YRB. Further analysis attributes this phenomenon to the regional descending airflow induced by the steep terrain along the slope of the Tibetan Plateau (TP).


Entropy ◽  
2021 ◽  
Vol 24 (1) ◽  
pp. 72
Author(s):  
Xinru Wang ◽  
Huijuan Cui

Due to both anthropogenic and climate change impacts, precipitation and runoff in the Yellow River basin have decreased in the past 50 years, leading to more pressure in sustaining human beings and ecosystem needs. It is essential to evaluate the flow condition in the Yellow River basin and see whether it may satisfy its ecological flow in the future. Therefore, this study applied an entropy-based method to calculate the flow duration curves from both observed and simulated data to evaluate the impact of climate change on ecological flow in the Yellow River basin. The simulated FDCs from H08 and DBH models show good agreement with each other and fit observation well. Results show that the decadal FDC at each station is generally predicted to be higher or stay in the higher range under both RCP 2.6 and 8.5 scenarios, suggesting an increase in water amount in the future. It is found that the high flows increase much faster than the low flows, resulting in larger slopes than the references ones, which is due to the larger entropy and M values in the future. At most of the stations, the future values of Q95 and Q90 will safely exceed the threshold. It is found that at the Lanzhou, Wubao, Longmen, and Huayuankou stations, there will be no or little threat to future ecological flow. Still, at the Toudaoguai and Sanmanxia stations, the ecological requirement is not always satisfied. The water stress at the Tangnaihai station from the upper stream of the Yellow River may be threatened in the future.


2011 ◽  
Vol 12 (5) ◽  
pp. 1113-1126 ◽  
Author(s):  
Zhifeng Yang ◽  
Qiang Liu

Abstract Climate changes impact hydrological processes and control streamflow at the basin scale. The present study was conducted to investigate the impact of climate change on streamflow in the Yellow River basin (YRB), China. The temporal trends of streamflow were explored by the Mann–Kendall method and a linear fit model, and the relationships between streamflow, precipitation, and potential evapotranspiration (ETp) were investigated. Furthermore, the contribution of climate changes to streamflow was revealed by Budyko’s method and a simple water balance model. The following results were obtained: (i) decreasing abruptness in streamflow occurred in 1990, and this date was used to divide the streamflow into two periods (baseline period and period of change); (ii) 67 of 80 stations showed decreasing trends with an average reduction of 10.37% of annual precipitation changes, while most of the stations displayed increasing trends with a 3.71% increase in annual ETp; (iii) the precipitation and ETp elasticity of streamflow, as expected, revealed that streamflow increases with increasing precipitation, whereas it decreases with increasing ETp; and (iv) the changes of precipitation and ETp reflected complementary effects on the reduction of streamflow from the baseline period to the period of change, the decreasing trend in precipitation being the main cause for the reduction of streamflow, but the declining rates of ETp causing a slight increase in streamflow.


2020 ◽  
Vol 6 (2) ◽  
pp. 21
Author(s):  
Zhe Zhang ◽  
Xiaochang Chu

<p>The national central city is not a single existence, and it must be based on the national-level urban agglomeration. At the same time, it must have superior geographical advantages and rich natural resources as the basis for development. Urban agglomeration promotes national central cities; on the contrary, national central cities can also drive the common development of urban agglomerations. During the National People’s Congress and National Committee of the Chinese People’s Political Consultative Conference this year, Jinan Municipal Government proposed to create a national central city in the Yellow River Basin as the development goal. In this article, the measures taken by Jinan Municipal Government to create the national central city of the Yellow River Basin are put forward, and the impact of the surrounding urban agglomeration on the development of Jinan is pointed out. Meanwhile, the opportunities and challenges that Jinan will bring to the surrounding urban agglomeration by establishing the national central city are elaborated.</p>


2021 ◽  
Vol 13 (8) ◽  
pp. 4530
Author(s):  
Kang Zhao ◽  
Rui Zhang ◽  
Hong Liu ◽  
Geyi Wang ◽  
Xialing Sun

The Yellow River Basin is an important energy base of China, and its green development is crucial to Chinese economic transformation. In this paper, we calculate the green total factor productivity (GTFP) to measure the green development level of the Yellow River Basin by using an Slack Based Model- Global Malmquist-Luenberger (SBM-GML) index model. On this basis, we use a Generalized Method of Moments (GMM) model to further analyze the impact of resource endowment and industrial structure on the green development of cities. The results show that resource endowment inhibits the green development of cities and that the resource curse is observed in the Yellow River Basin. The industrial structure advancement significantly promotes the green development of cities. The impact of industrial structure rationalization on green development varies significantly on the type of city. Specifically, it has an inhibiting effect on key environmental protection cities but a promoting effect on non-key environmental protection cities.


Geofluids ◽  
2021 ◽  
Vol 2021 ◽  
pp. 1-20
Author(s):  
Liang Shiwei ◽  
Wang Hongmei ◽  
Ge Di ◽  
Zhao Cunqing

In our country, the Yellow River Basin ecological protection and development are put forward under the background of high quality. Among the 14 large-scale coal bases in our country, 9 coal bases are located in the Yellow River Basin, and the Shenfu-Dongsheng Coalfield, which is currently the largest under development, is located here. The region is in the process of coal mining, and the movement of overlying strata will cause the stress redistribution and coal seam in overlying aquifers also due to the effect of pore water pressure along the seepage of rock fracture and damage of overlying aquifer, so in the same formation, stress and the coupled action of seepage flow will produce mutual influence. This article through the early stage of the theoretical results discussed the application of numerical simulation method for simulating 2301 face, and the effect of stress on seepage is concluded. It is proved that the numerical simulation analysis has an important reference value for the coupling problem of stress and seepage. At the same time, the protective mining of aquifers is the basic condition for the surface ecological protection of the area, and it also provides a theoretical basis for the restoration of the ecological environment in the coal mining areas of the Yellow River Basin.


Atmosphere ◽  
2020 ◽  
Vol 11 (12) ◽  
pp. 1307
Author(s):  
Jiao Li ◽  
Yang Zhao ◽  
Zhenfei Tang

The projection of future precipitation over the Yellow River Basin (YRB) is of great importance to regional climate change adaptation and mitigation. Using the historical simulations and projections under the four combined scenarios of the shared socioeconomic pathways and the forcing levels of the Representative Concentration Pathways (SSP1-2.6, SSP2-4.5, SSP3-7.0 and SSP5-8.5) provided by the multimodel ensemble mean of 10 models in phase six of the Coupled Model Intercomparison Project (CMIP6), the projected spatial and temporal changes of future summer precipitation over the YRB and the possible physical mechanisms underlying future summer precipitation changes are investigated. Large discrepancies in precipitation exist among the four scenarios during the latter half period of the 21st century, with precipitation under SSP5-8.5 being the largest. Nevertheless, the precipitation under each of the four scenarios shows a similar spatial pattern over the YRB, with an east–west-oriented gradient. A comparison of projected moisture transport into the YRB among the four scenarios reveals two channels (westerlies and monsoon flow) under SSP5-8.5, whereas the monsoon flow from adjacent oceans is important under the other three scenarios. Further analysis of the unique features of the projected moisture flux and substantial increase in summer precipitation under SSP5-8.5 indicates that the future summer precipitation trend over the YRB can be mainly attributed to an increase in evaporation and moisture advection.


Sign in / Sign up

Export Citation Format

Share Document