Screening for a new generation of anthelminthic compounds.In vitro selection of the nematodeCaenorhabditis elegans for ivermectin resistance

1992 ◽  
Vol 37 (3) ◽  
pp. 237-238 ◽  
Author(s):  
J. Novák ◽  
Z. Vaněk
Keyword(s):  
2018 ◽  
Author(s):  
Christopher J. Smedley ◽  
Bing Gao ◽  
Suhua Li ◽  
Qinheng Zheng ◽  
Andrew Molino ◽  
...  

Sulfur-Fluoride Exchange (SuFEx) is the new generation click chemistry transformation exploiting the unique properties of S-F bonds and their ability to undergo near-perfect reactions with nucleophiles. We report here the first SuFEx based protocol for the efficient synthesis of pharmaceutically important triflones and bis(trifluoromethyl)sulfur oxyimines from the corresponding sulfonyl fluorides and iminosulfur oxydifluorides, respectively. The new protocol involves the rapid exchange of the S-F bond with trifluoromethyltrimethylsilane (TMSCF<sub>3</sub>) upon activation with potassium bifluoride in anhydrous DMSO. The reaction tolerates a wide selection of substrates and proceeds under mild conditions without need for chromatographic purification. A tentative catalytic mechanism is proposed supported by DFT calculations, involving formation of the free trifluoromethyl anion followed by nucleophilic displacement of the S-F through a five-coordinate intermediate. The preparation of a benzothiazole derived bis(trifluoromethyl)sulfur oxyimine with cytotoxic selectivity for MCF7 breast cancer cells demonstrates the utility of this methodology for the late-stage functionalization of bioactive molecules.<br>


Author(s):  
Lloyd A. Cooke

Advanced repair technologies have been introduced to the gas turbine industry over recent years. An increasing selection of coating systems is available which can be tailored to the specific operating environment. Automated welding systems and the use of custom weld filler metals for enhanced component life provide a means of reliably welding the new generation of high strength turbine blade alloys. Powder metallurgy processes have been introduced as an alternative to welding and have been used to upgrade certain components by employing higher strength repair materials than the original castings. In the paper, these and other technologies are assessed based on engine operating experience with direct comparison to the conventional repair techniques which they have replaced.


2005 ◽  
Vol 128 (4) ◽  
pp. 824-826
Author(s):  
Jeff Thielman ◽  
Ping Ge

As a new generation of printing technology, thermal inkjet (TIJ) has been widely adopted to meet the increasing demand for high printing quality and efficiency at an affordable price. High air barrier tubes play an important role in the reliable operation of the printhead in a commercial thermal inkjet printer. Desired tube qualities include low stiffness and low pressure drop, along with others. Tube stiffness and pressure drop can be lowered through the selection of proper tube layer configuration, geometry, and material properties. However, the existing tube design practice is highly heuristic and design results are not optimal. In this work, using TIJ design as a real world example, a comparative study is conducted to support the use of formal methods in design applications previously governed by heuristic/trial-and-error approaches. Two cases using different optimization strategies are investigated: Case A—performance-based optimization strategy; and Case B—robust design-based optimization strategy. A comparison of their results with the current practice shows that the optimization strategies can greatly improve the efficiency of the current tube design process. More important, the optimization strategy with variation consideration yields robust results and provides much richer design knowledge to support designers with various experiences to make better decisions.


2012 ◽  
Vol 2012 ◽  
pp. 1-17 ◽  
Author(s):  
Rui Zhang ◽  
Cheng Wu

Most existing research on the job shop scheduling problem has been focused on the minimization of makespan (i.e., the completion time of the last job). However, in the fiercely competitive market nowadays, delivery punctuality is more important for maintaining a high service reputation. So in this paper, we aim at solving job shop scheduling problems with the total weighted tardiness objective. Several dispatching rules are adopted in the Giffler-Thompson algorithm for constructing active schedules. It is noticeable that the rule selections for scheduling consecutive operations are not mutually independent but actually interrelated. Under such circumstances, a probabilistic model-building genetic algorithm (PMBGA) is proposed to optimize the sequence of selected rules. First, we use Bayesian networks to model the distribution characteristics of high-quality solutions in the population. Then, the new generation of individuals is produced by sampling the established Bayesian network. Finally, some elitist individuals are further improved by a special local search module based on parameter perturbation. The superiority of the proposed approach is verified by extensive computational experiments and comparisons.


2018 ◽  
Author(s):  
Adinarayana Kunamneni ◽  
Elizabeth C. Clarke ◽  
Chunyan Ye ◽  
Steven B. Bradfute ◽  
Ravi Durvasula

AbstractFiloviruses, which include ebolaviruses and marburgvirus, can cause outbreaks of highly lethal hemorrhagic fever. This disease causes significant morbidity and mortality in humans and non-human primates, with human fatality rates reaching 90% during some outbreaks. Currently, there are a lack of licensed vaccines or antivirals for these viruses. Since early symptoms of filovirus infection mimic more common diseases, there is a strong unmet public health and biodefense need for broad-spectrum filovirus rapid diagnostics. We have generated a panel of mouse single-chain Fv-antibodies (scFvs) to filovirus glycoproteins (GPs) using cell-free ribosome display and determined their cross-reactivity profiles to all known filovirus species. Two scFvs (4-2 and 22-1) were able to detect all known Ebolavirus and Marburgvirus species. This is the first report on ribosome display scFvs that can detect a broad set of filovirus GPs, which demonstrates their potential use in the development of a new generation of rapid diagnostic immunoassays.


Author(s):  
Giancarlo Mauri ◽  
Gheorghe Păun ◽  
Agustín Riscos-Núñez

<p>The present volume contains a selection of papers resulting from the Seventh Brainstorming Week on Membrane Computing (BWMC7), held in Sevilla, from February 2 to February 6, 2009. The meeting was organized by the Research Group on Natural Computing (RGNC) from Department of Computer Science and Artificial Intelligence of Sevilla University. The previous editions of this series of meetings were organized in Tarragona (2003), and Sevilla (2004 – 2008). After the first BWMC, a special issue of Natural Computing – volume 2, number 3, 2003, and a special issue of New Generation Computing – volume 22, number 4, 2004, were published; papers from the second BWMC have appeared in a special issue of Journal of Universal Computer Science – volume 10, number 5, 2004, as well as in a special issue of Soft Computing – volume 9, number 5, 2005; a selection of papers written during the third BWMC has appeared in a special issue of International Journal of Foundations of Computer Science – volume 17, number 1, 2006); after the fourth BWMC a special issue of Theoretical Computer Science was edited – volume 372, numbers 2-3, 2007; after the fifth edition, a special issue of International Journal of Unconventional Computing was edited – volume 5, number 5, 2009; finally, a selection of papers elaborated during the sixth BWMC has appeared in a special issue of Fundamenta Informaticae</p>


Crystals ◽  
2021 ◽  
Vol 11 (12) ◽  
pp. 1520
Author(s):  
Salem Mohammed Aldosari ◽  
Sameer Rahatekar

Mesophase pitch-based carbon fibres have excellent resistance to plastic deformation (up to 840 GPa); however, they have very low strain to failure (0.3) and are considered brittle. Hence, the development of pitch fibre precursors able to be plastically deformed without fracture is important. We have previously, successfully developed pitch-based precursor fibres with high ductility (low brittleness) by blending pitch and linear low-density polyethylene. Here, we extend our research to study how the extrusion dwell time (0, 6, 8, and 10 min) affects the physical properties (microstructure) of blend fibres. Scanning electron microscopy of the microstructure showed that by increasing the extrusion dwell from 0 to 10 min the pitch and polyethylene components were more uniformly dispersed. The tensile strength, modulus of elasticity, and strain at failure for the extruded fibres for different dwell times were measured. Increased dwell time resulted in an increase in strain to failure but reduced the ultimate tensile strength. Thermogravimetric analysis was used to investigate if increased dwell time improved the thermal stability of the samples. This study presents a useful guide to help with the selection of mixes of linear low-density polyethylene/pitch blend, with an appropriate extrusion dwell time to help develop a new generation of potential precursors for pitch-based carbon fibres.


Sign in / Sign up

Export Citation Format

Share Document