Effects of combustor-level high free-stream turbulence on blade-surface heat/mass transfer in the three-dimensional flow region near the endwall of a high-turning turbine rotor cascade

2005 ◽  
Vol 19 (6) ◽  
pp. 1347-1357 ◽  
Author(s):  
Lee Sang Woo ◽  
Kwon Hyun Goo ◽  
Park Byung-Kyu
Author(s):  
Sang Woo Lee ◽  
Sang Bae Jun ◽  
Byung-Kyu Park ◽  
Joon Sik Lee

Experimental data are presented which describe the effects of a combustor-level high free-stream turbulence on the near-wall flow structure and heat/mass transfer in the endwall region of a linear high-turning turbine rotor cascade. The endwall flow structure is visualized by employing the partial- and total-coverage oil-film technique, and heat/mass transfer rate is measured by the naphthalene sublimation method. A turbulence generator is designed to provide a turbulent boundary layer flow which has free-stream turbulence intensity and integral length scale of 14.7% and 80 mm, respectively, at the entrance of the turbine cascade. The surface flow visualization shows that the high free-stream turbulence has little effect on the attachment line, but alters the separation line noticeably. Under high free-stream turbulence, the incoming near-wall flow upstream of the adjacent separation lines collides at a shallower angle with the suction surface. A weaker lift-up force arising from this more oblique collision results in the narrower suction-side corner vortex area in the high turbulence case. The high free-stream turbulence enhances the heat/mass transfer in the central area of the turbine passage, but only a slight augmentation is found in the endwall regions adjacent to the leading and trailing edges. Therefore, the high free-stream turbulence makes the endwall heat load more uniform. It is also observed that the heat/mass transfers along the locus of the pressure-side leg of the leading-edge horseshoe vortex and along the suction-side corner are influenced most strongly by the high free-stream turbulence. The endwall surface is classified into seven different regions based on the local heat/mass transfer distribution, and the effects of the high free-stream turbulence on the local heat/mass transfer in each region are discussed in detail.


Author(s):  
Takayuki Matsunuma

Tip clearance losses represent a major efficiency penalty of turbine blades. This paper describes the effect of tip clearance on the aerodynamic characteristics of an unshrouded axial-flow turbine cascade under very low Reynolds number conditions. The Reynolds number based on the true chord length and exit velocity of the turbine cascade was varied from 4.4 × 104 to 26.6 × 104 by changing the velocity of fluid flow. The free-stream turbulence intensity was varied between 0.5% and 4.1% by modifying turbulence generation sheet settings. Three-dimensional flow fields at the exit of the turbine cascade were measured both with and without tip clearance using a five-hole pressure probe. Tip leakage flow generated a large high total pressure loss region. Variations in the Reynolds number and free-stream turbulence intensity changed the distributions of three-dimensional flow, but had no effect on the mass-averaged tip clearance loss of the turbine cascade.


1999 ◽  
Vol 121 (2) ◽  
pp. 217-224 ◽  
Author(s):  
H. P. Wang ◽  
R. J. Goldstein ◽  
S. J. Olson

The naphthalene sublimation technique is used to investigate the influence of high free-stream turbulence with large length scale on the heat/mass transfer from a turbine blade in a highly accelerated linear cascade. The experiments are conducted at four exit Reynolds numbers, ranging from 2.4 × 105 to 7.8 × 105, with free-stream turbulence of 3, 8.5, and 8 percent and corresponding integral length scales of 0.9 cm, 2.6 cm, and 8 cm, respectively. On the suction surface, the heat/mass transfer rate is significantly enhanced by high free-stream turbulence due to an early boundary layer transition. By contrast, the transition occurs very late, and may not occur at very low Reynolds numbers with low free-stream turbulence. In the turbulent boundary layer, lower heat/mass transfer rates are found for the highest free-stream turbulence level with large length scale than for the moderate turbulence levels with relatively small scales. Similar phenomena also occur at the leading edge. However, the effect of turbulence is not as pronounced in the laminar boundary layer.


1998 ◽  
Vol 120 (3) ◽  
pp. 530-540 ◽  
Author(s):  
R. W. Moss ◽  
R. W. Ainsworth ◽  
T. Garside

Measurements of turbine blade surface heat transfer in a transient rotor facility are compared with predictions and equivalent cascade data. The rotating measurements involved both forward and reverse rotation (wake-free) experiments. The use of thin-film gages in the Oxford Rotor Facility provides both time-mean heat transfer levels and the unsteady time history. The time-mean level is not significantly affected by turbulence in the wake; this contrasts with the cascade response to free-stream turbulence and simulated wake passing. Heat transfer predictions show the extent to which such phenomena are successfully modeled by a time-steady code. The accurate prediction of transition is seen to be crucial if useful predictions are to be obtained.


1995 ◽  
Vol 117 (3) ◽  
pp. 418-424 ◽  
Author(s):  
K. A. Thole ◽  
D. G. Bogard

Surface heat transfer and skin friction enhancements, as a result of free-stream turbulence levels between 10 percent < Tu > 20 percent, have been measured and compared in terms of correlations given throughout the literature. The results indicate that for this range of turbulence levels, the skin friction and heat transfer enhancements scale best using parameters that are a function of turbulence level and dissipation length scale. However, as turbulence levels approach Tu = 20 percent, the St′ parameter becomes more applicable and simpler to apply. As indicated by the measured rms velocity profiles, the maximum streamwise rms value in the near-wall region, which is needed for St′, is the same as that measured in the free stream at Tu = 20 percent. Analogous to St′, a new parameter, Cf′, was found to scale the skin friction data. Independent of all the correlations evaluated, the available data show that the heat transfer enhancement is greater than the enhancement of skin friction with increasing turbulence levels. At turbulence levels above Tu = 10 percent, the free-stream turbulence starts to penetrate the boundary layer and inactive motions begin replacing shear-stress producing motions that are associated with the fluid/wall interaction. Although inactive motions do not contribute to the shear stress, these motions are still active in removing heat.


2016 ◽  
Vol 21 (2) ◽  
pp. 359-376
Author(s):  
N.A. Khan ◽  
F. Naz

AbstractThis investigation analyses a three dimensional flow and mass transfer of a second grade fluid over a porous stretching wall in the presence of suction or injection. The equations governing the flow are attained in terms of partial differential equations. A similarity transformation has been utilized for the transformation of partial differential equations into the ordinary differential equations. The solutions of the nonlinear systems are given by the homotopy analysis method (HAM). A comparative study with the previous results of a viscous fluid has been made. The convergence of the series solution has also been considered explicitly. The influence of admissible parameters on the flows is delineated through graphs and appropriate results are presented. In addition, it is found that instantaneous suction and injection reduce viscous drag on the stretching sheet. It is also shown that suction or injection of a fluid through the surface is an example of mass transfer and it can change the flow field.


2011 ◽  
Vol 669 ◽  
pp. 64-89 ◽  
Author(s):  
JAN G. WISSINK ◽  
WOLFGANG RODI

The effect of an incoming wake on the flow around and heat transfer from the stagnation region of a circular cylinder was studied using direct numerical simulations (DNSs). Four simulations were carried out at a Reynolds number (based on free-stream velocity and cylinder diameterD) ofReD= 13200: one two-dimensional (baseline) simulation and three three-dimensional simulations. The three-dimensional simulations comprised a baseline simulation with a uniform incoming velocity field, a simulation in which realistic wake data – generated in a separate precursor DNS – were introduced at the inflow plane and, finally, a simulation in which the turbulent fluctuations were removed from the incoming wake in order to study the effect of the mean velocity deficit on the heat transfer in the stagnation region. In the simulation with realistic wake data, the incoming wake still exhibited the characteristic meandering behaviour of a near-wake. When approaching the regions immediately above and below the stagnation line of the cylinder, the vortical structures from the wake were found to be significantly stretched by the strongly accelerating wall-parallel (circumferential) flow into elongated vortex tubes that became increasingly aligned with the direction of flow. As the elongated streamwise vortical structures impinge on the stagnation region, on one side they transport cool fluid towards the heated cylinder, while on the other side hot fluid is transported away from the cylinder towards the free stream, thereby increasing the heat transfer. The DNS results are compared with various semi-empirical correlations for predicting the augmentation of heat transfer due to free-stream turbulence.


Sign in / Sign up

Export Citation Format

Share Document