Evidence for a intimate relationship between mast cells and nerve fibers in the tongue of the frog,Rana esculenta

1997 ◽  
Vol 8 (2) ◽  
pp. 93-100 ◽  
Author(s):  
Gabriella Chieffi Baccari ◽  
Sergio Minucci
Cells ◽  
2021 ◽  
Vol 10 (7) ◽  
pp. 1586
Author(s):  
Tomoe Yashiro ◽  
Hanako Ogata ◽  
Syed Faisal Zaidi ◽  
Jaemin Lee ◽  
Shusaku Hayashi ◽  
...  

Recently, the involvement of the nervous system in the pathology of allergic diseases has attracted increasing interest. However, the precise pathophysiological role of enteric neurons in food allergies has not been elucidated. We report the presence of functional high-affinity IgE receptors (FcεRIs) in enteric neurons. FcεRI immunoreactivities were observed in approximately 70% of cholinergic myenteric neurons from choline acetyltransferase-eGFP mice. Furthermore, stimulation by IgE-antigen elevated intracellular Ca2+ concentration in isolated myenteric neurons from normal mice, suggesting that FcεRIs are capable of activating myenteric neurons. Additionally, the morphological investigation revealed that the majority of mucosal mast cells were in close proximity to enteric nerve fibers in the colonic mucosa of food allergy mice. Next, using a newly developed coculture system of isolated myenteric neurons and mucosal-type bone-marrow-derived mast cells (mBMMCs) with a calcium imaging system, we demonstrated that the stimulation of isolated myenteric neurons by veratridine caused the activation of mBMMCs, which was suppressed by the adenosine A3 receptor antagonist MRE 3008F20. Moreover, the expression of the adenosine A3 receptor gene was detected in mBMMCs. Therefore, in conclusion, it is suggested that, through interaction with mucosal mast cells, IgE-antigen-activated myenteric neurons play a pathological role in further exacerbating the pathology of food allergy.


Neuroscience ◽  
1997 ◽  
Vol 77 (3) ◽  
pp. 829-839 ◽  
Author(s):  
V Dimitriadou ◽  
A Rouleau ◽  
M.D Trung Tuong ◽  
G.J.F Newlands ◽  
H.R.P Miller ◽  
...  

1992 ◽  
Vol 20 (01) ◽  
pp. 25-35 ◽  
Author(s):  
Michio Kimura ◽  
Kazuo Tohya ◽  
Kyo-ichi Kuroiwa ◽  
Hirohisa Oda ◽  
E. Christo Gorawski ◽  
...  

During a sparrow-pecking and twisting-needle manipulation to the acupoints BL 23, 24 and 25 for an induction of "Qi", it was found that some transparent materials were binding to the needles after removed from the volunteer's skin. Electron-microscopical analysis of the transparent materials revealed that they corresponded to the injured fascia made up of collagen fibers, elastic fibers, fibroblasts, adipocytes and mast cells. Rarely were nerve fiber-like structures observed in the materials. Immunohistochemically, calcitonin gene-related peptide-positive nerve fibers could be demonstrated in the acupoint BL 24 associated fascia. A possible functional relationship between the needle manipulation and the induction of Qi-sensation is discussed along with the acupoint tissue constitution.


1985 ◽  
Vol 33 (9) ◽  
pp. 933-941 ◽  
Author(s):  
P Panula ◽  
M Kaartinen ◽  
M Mäcklin ◽  
E Costa

An immunohistochemical method was developed to detect histamine in tissues. The aim of this study was to reveal the cellular stores of histamine in the gastrointestinal tract, pituitary, and adrenal gland. Histamine-containing nerve fibers were found in both rat and guinea pig gut. The origin of at least some of these fibers in the rat ileum was the submucous ganglion cell layer. In the rat stomach, numerous enterochromaffin-like cells exhibited histamine immunofluorescence, and endocrine cells in the ileum and jejunum contained histamine. Only mast cells contained histamine in the neurohypophysis. A large number of process-bearing cells in the guinea pig but not in the rat adrenal medulla contained histamine. The study shows that histamine is present in peripheral nerves and endocrine cells in addition to mast cells, and may function as a neurotransmitter or hormone.


1990 ◽  
Vol 68 (6) ◽  
pp. 2305-2311 ◽  
Author(s):  
J. N. Baraniuk ◽  
M. L. Kowalski ◽  
M. A. Kaliner

Electrical stimulation of rat sensory nerves produces cutaneous vasodilation and plasma protein extravasation, a phenomenon termed “neurogenic inflammation”. Rat skin on the dorsum of the paw developed neurogenic inflammation after electrical stimulation of the saphenous nerve. In tissue sections, the extravasation of the supravital dye monastral blue B identified permeable vessels. Mast cells were identified by toluidine blue stain. Permeable vessels were significantly more dense in the superficial 120 microns of the dermis than in the deeper dermis, whereas mast cells were significantly more frequent in the deeper dermis. The relationships between nociceptive sensory nerve fibers, permeable vessels, and mast cells were examined by indirect immunohistochemistry for calcitonin gene-related peptide (CGRP), neurokinin A (NKA), and substance P (SP). CGRP-, NKA-, and SP-containing nerves densely innervated the superficial dermis and appeared to innervate the vessels that became permeable during neurogenic inflammation. In contrast, mast cells were not associated with either permeable vessels or nerve fibers. These data suggest that electrical stimulation of rat sensory nerves produces vascular permeability by inducing the release of neuropeptides that may directly stimulate the superficial vascular bed. Mast cells may not be involved in this stage of cutaneous neurogenic inflammation in rat skin.


Blood ◽  
2014 ◽  
Vol 124 (21) ◽  
pp. 453-453
Author(s):  
Kathryn Luk ◽  
Julia Nguyen ◽  
Jinny Paul ◽  
Barbara Benson ◽  
Yann Y Lamarre ◽  
...  

Abstract We showed that mast cell activation/degranulation contributes to pain and neurogenic inflammation characterized by increased vascular permeability in sickle mice (Vincent et al., Blood 2013). Mast cells are tissue resident inflammatory cells, which are located in the vicinity of vasculature and nerve fibers. Neurogenic inflammation is mediated by activation of peripheral nerve fibers via the release of vasoactive and neurinflammatory peptide, substance P. However, the products of mast cell activation may have direct effects on the vasculature. Sickle pathobiology is characterized by endothelial dysfunction, inflammation and oxidative stress. We hypothesized that the neuropeptides, proteases, and cytokines released from activated mast cells lead to endothelial dysfunction by stimulating endoplasmic reticulum (ER) stress, and mitochondrial dysfunction, leading to oxidative stress. We examined the direct effect of mast cell activation on endothelium. Since morphine is used to treat pain in sickle cell disease (SCD) and also influences endothelial signaling (Gupta et al., Cancer Res 2002), we investigated if morphine contributes to endothelial dysfunction. Methods. We isolated mast cells from the skin of HbSS-BERK sickle mice, which demonstrate severe mast cell activation and hyperalgesia (pain) and HbAA-BERK control mice. Mast cells from sickle mouse skin continue to degranulate in culture, but the mast cells from control mice do not. We collected the supernatant from mast cell cultures and used it to treat primary mouse brain microvascular endothelial cells (MBMEC) in vitro. ER stress was assayed using ER-Tracker Green (Glibenclamide BODIPY FL) dye (Molecular Probes) on live cells followed by laser scanning confocal microscopy (LSCM). ER stress markers, E74-like factor 2a (ELF2a), X-box binding protein 1 (XBP1), and glucose regulated protein 78 (GRP78), were analyzed with Western Immunoblotting. Mitochondrial function was analyzed by estimating mitochondrial membrane potential with MitoProbe JC-1 (Molecular Probes), which exhibits potential-dependent accumulation in mitochondria, causing a fluorescence emission shift from green (~529 nm) to red (~590 nm). Mitochondrial depolarization (dysfunction) was analyzed by a decrease in red/green ratio using LSCM. ROS was assayed using 2’7’-dichlorofluorescein diacetate and quantifying the fluorescence at the max excitation and emission spectra of 495 nm and 529 nm, respectively. Results. Supernatant from sickle mast cells led to significant ER stress in MBMEC, as compared to the supernatant from control mast cells (p<0.05). Western blotting demonstrated an increase in ER stress markers, phosphor-elF2a, sXBP1 and GRP78, in MBMEC incubated with sickle mast cell supernatant as compared to control mast cell supernatant. Complementary to the sickle mast cell-induced ER stress, mitochondria potential decreased in MBMEC treated with sickle mast cell supernatant as compared to control mast cell supernatant (p < 0.05). We observed that supernatant from activated cutaneous mast cells stimulated a 10-fold increase in reactive oxygen species (ROS) in MBMEC (p < 0.05). This effect was further exacerbated in MBMEC treated with both sickle mast cell supernatant and morphine (p < 0.01). Morphine alone increased ROS production 4-fold in MBMEC. ER stress inhibitor, Salubrinal, inhibited ROS production in MBMEC induced by sickle mast cells. Together, these data suggest that mast cell activation stimulates ER stress in MBMEC, which may lead to mitochondrial dysfunction and generation of ROS. Thus, mast cell degranulation alone/and in addition to morphine, may contribute to endothelial dysfunction in SCD. Disclosures No relevant conflicts of interest to declare.


1998 ◽  
pp. 2252
Author(s):  
M. A. Hofmeister ◽  
F. He ◽  
T. L. Ratliff ◽  
T. Mahoney ◽  
M. J. Becich

Author(s):  
F. He ◽  
M. Hofmeister ◽  
T. Ratliff ◽  
M. Becich

The ultrastructure of human mast cells (HMCs) in various diseases has been well documented; however, detailed morphological description of human bladder mast cells (HBMCs) in patients with interstitial cystitis (IC) is incomplete. The present study was undertaken to reveal any morphological modifications of human bladder mast cells (HBMCs) from the IC patients and to investigate the spatial relationships between nerve fibers and these mast cells at the ultrastructural level.Fresh-fixed surgical biopsy specimens from IC patients as well as paraffin blocks of IC retrieved through our medical record archival system were processed with routine and deparaffinization methods for transmission electron microscopy (1). No differences in mast cell morphology were noticed between the fresh-fixed or paraffin embedded tissues.The general electron microscopic appearances of the HBMCs in IC located in both mucosa and muscle layers were similar to those of HMCs observed in other sites where mastocytosis may occur due to various pathological processes (Fig. 1).


Sign in / Sign up

Export Citation Format

Share Document