Christopher Price’s point of view about POCT (Point Of Care Testing)

2002 ◽  
Vol 3 (1) ◽  
pp. 48-49
Author(s):  
Christopher Price
VASA ◽  
2011 ◽  
Vol 40 (6) ◽  
pp. 429-438 ◽  
Author(s):  
Berent ◽  
Sinzinger

Based upon various platelet function tests and the fact that patients experience vascular events despite taking acetylsalicylic acid (ASA or aspirin), it has been suggested that patients may become resistant to the action of this pharmacological compound. However, the term “aspirin resistance” was created almost two decades ago but is still not defined. Platelet function tests are not standardized, providing conflicting information and cut-off values are arbitrarily set. Intertest comparison reveals low agreement. Even point of care tests have been introduced before appropriate validation. Inflammation may activate platelets, co-medication(s) may interfere significantly with aspirin action on platelets. Platelet function and Cox-inhibition are only some of the effects of aspirin on haemostatic regulation. One single test is not reliable to identify an altered response. Therefore, it may be more appropriate to speak about “treatment failure” to aspirin therapy than using the term “aspirin resistance”. There is no evidence based justification from either the laboratory or the clinical point of view for platelet function testing in patients taking aspirin as well as from an economic standpoint. Until evidence based data from controlled studies will be available the term “aspirin resistance” should not be further used. A more robust monitoring of factors resulting in cardiovascular events such as inflammation is recommended.


2020 ◽  
Vol 27 ◽  
Author(s):  
Yi Zhang

: Point-of-care (POC) testing decentralizes the diagnostic tests to the sites near the patient. Many POC tests rely microfluidic platforms for sample-to-answer analysis. Compared to other microfluidic systems, magnetic digital microfluidics demonstrate compelling advantages for POC diagnostics. In this review, we have examined the capability of magnetic digital microfluidics-based POC diagnostic platforms. More importantly, we have categorized POC settings into three classes based on “where is the point”, “who to care” and “how to test”, and evaluated the suitability of magnetic digital microfluidics in various POC settings. Furthermore, we have addressed other technical issues associated with POC testing such as controlled environment, sample-system interface, system integration and information connectivity. We hope this review would provide a guideline for the future development of magnetic digital microfluidics-based platforms for POC testing.


2021 ◽  
Author(s):  
Yusuke Kanno ◽  
Yuanshu Zhou ◽  
Takeshi Fukuma ◽  
Yasufumi Takahashi

Sign in / Sign up

Export Citation Format

Share Document