Vibration Stress Relief Treatment of welded high-strength martensitic steel

2011 ◽  
Vol 55 (1-2) ◽  
pp. 86-93 ◽  
Author(s):  
Dragan Djuric ◽  
Rudolf Vallant ◽  
Klaus Kerschbaumer ◽  
Norbert Enzinger
2014 ◽  
Vol 887-888 ◽  
pp. 924-928 ◽  
Author(s):  
Shu Qi Li ◽  
Hong Yuan Fang ◽  
Xuesong Liu

Welded components of DH36 low alloy high strength steel are widely used in offshore oil platforms and ships building. Stress reliving treatments to these welded components is of great importance. Vibration stress relief (VSR) method is an novel technology to release stress in welded components. In this study, 10×200×1000mm DH 36 steel plates were welded and then treated by VSR for about 1 hour. After the treatment, the residual stress was decreased by 29-72% at the welded toe, where the highest residual stress occurs. The metallographic microstructure of the joint was not changed by VSR. Investigation by transmission electron microscope (TEM) revealed that the amount of dislocations was increased at the welded toe. We hope this study can provide theoretical and practical fundamentals for widespread application of VSR on welded offshore engineering components.


Metals ◽  
2021 ◽  
Vol 11 (8) ◽  
pp. 1239
Author(s):  
Liping Zhong ◽  
Bo Wang ◽  
Chundong Hu ◽  
Jieyu Zhang ◽  
Yu Yao

In this paper, in order to improve the microstructure uniformity of an ultra-high strength martensitic steel with a strength greater than 2500 MPa developed by multi-directional forging in the laboratory, a single-pass hot compression experiment with the strain rate of 0.01 to 1 s−1 and a temperature of 800 to 1150 °C was conducted. Based on the experimental data, the material parameters were determined, the constitutive model considering the influence of work hardening, the recrystallization softening on the dislocation density, and the recrystallized grain size model were established. After introducing the model into the finite element software DEFORM-3D, the thermal compression experiment was simulated, and the results were consistent with the experimental results. The rule for obtaining forging stock with a uniform and refinement microstructure was acquired by comparing the simulation and the experimental results, which are helpful to formulate an appropriate forging process.


2012 ◽  
Vol 430-432 ◽  
pp. 881-885
Author(s):  
Cai Jun Gan ◽  
Kai Liao

The level and distribution of residual stresses have great impact on dimensional stability, while Vibratory Stress Relief (VSR) is an effective technology to relax or homogenize residual stresses. Experimental study on residual stresses distribution, residual strain energy and machining deformation of 7075 high-strength aluminum alloy thick plate under different aging process status shows that VSR can effectively decrease the amplitude and strain energy density, and enhance stability of dislocation structures and phase states in metal microscopic volume, then internal residual stresses are homogenized to enhance components’ anti-deformation capacity. In addition, the capability in maintaining dimensional stability from VSR is better than that from traditional mechanical stretching process


2011 ◽  
Vol 528 (29-30) ◽  
pp. 8486-8491 ◽  
Author(s):  
Ke Zhang ◽  
Meihan Zhang ◽  
Zhenghong Guo ◽  
Nailu Chen ◽  
Yonghua Rong

2021 ◽  
Vol 1032 ◽  
pp. 135-140
Author(s):  
Shao Feng Wu ◽  
Xiang Sheng Gao ◽  
Xian Rang Zhang ◽  
Han Jun Gao

Vibration stress relief (VSR) and thermal stress relief (TSR) are important method to eliminate the residual stress of structural parts. The thermal vibratory stress relief (TVSR) is a new method to decrease and homogenize the residual stress. Based on the stress relaxation tests and the equivalent vibration equation of modal analysis, the creep constitutive model and the bilinear isotropic hardening plasticity material model (BISO) are combined to establish the numerical simulation model of TVSR of 7075 aluminum alloy ring part. The simulation results show that four different initial blank residual stress levels are obtained after quenching process, and the residual stress elimination and homogenization effect of TSR and TVSR is better than that of VSR. TVSR has a better effect on both residual stress elimination and homogenization, and the residual stress relief rate can reach more than 20%.


Crystals ◽  
2019 ◽  
Vol 9 (2) ◽  
pp. 94 ◽  
Author(s):  
Ke Zhang ◽  
Maoyuan Zhu ◽  
Bitong Lan ◽  
Ping Liu ◽  
Wei Li ◽  
...  

High-strength medium-carbon martensitic steel was heat treated through a quenching-partitioning-tempering (Q-P-T) treatment. Both the mechanism for improved ductility and the high temperature stability of austenite were investigated. The Q-P-T martensitic steel showed good products of strength and elongation (PSE) at various deformation temperatures ranging within 25–350 °C. The optimum PSE value (>57,738 MPa%) was achieved at 200 °C. The microstructure of the Q-P-T steel is constituted of laths martensite with dislocations, retained austenite located within lath martensite and small niobium carbides (NbC), and/or transitional ε-carbides that precipitated in the lath martensite. The good ductility can be mainly attributed to the laminar-like austenite that remained within the lath-martensite. The austenite can effectively enhance ductility through the effect of dislocation absorption by the retained austenite and through transformation-induced plasticity. The relationship between the microstructures and mechanical properties was investigated at high deformation temperatures.


Sign in / Sign up

Export Citation Format

Share Document