Effect of thyroid hormone on the development and gene expression of hormone receptors in rat testes in vivo

2003 ◽  
Vol 26 (5) ◽  
pp. 435-443 ◽  
Author(s):  
J. N. Rao ◽  
J. Y. Liang ◽  
P. Chakraborti ◽  
Pei Feng
2010 ◽  
Vol 163 (5) ◽  
pp. 765-773 ◽  
Author(s):  
J Lado-Abeal ◽  
A Romero ◽  
I Castro-Piedras ◽  
A Rodriguez-Perez ◽  
J Alvarez-Escudero

AimNon-thyroidal illness syndrome (NTIS) is related to changes in thyroid hormone (TH) physiology. Skeletal muscle (SM) plays a major role in metabolism, and TH regulates SM phenotype and metabolism. We aimed to characterize the SM of non-septic shock NTIS patients in terms of: i) expression of genes and proteins involved in TH metabolism and actions; and ii) NFKB's pathway activation, a responsible factor for some of the phenotypic changes in NTIS. We also investigated whether the patient's serum can induce in vitro the effects observed in vivo.MethodsSerum samples and SM biopsies from 14 patients with non-septic shock NTIS and 11 controls. Gene and protein expression and NFKB1 activation were analyzed by quantitative PCR and immunoblotting. Human SM cell (HSkMC) cultures to investigate the effects of patient's serum on TH action mediators.ResultsPatients with non-septic shock NTIS showed higher levels of pro-inflammatory cytokines than controls. Expression of TRβ (THRB), TRα1 (THRA), and retinoid X receptor γ (RXRG) was decreased in NTIS patients. RXRA gene expression was higher, but its protein was lower in NTIS than controls, suggesting the existence of a post-transcriptional mechanism that down-regulates protein levels. NFKB1 pathway activation was not different between NTIS and control patients. HSkMC incubated with patient's serum increased TH receptor and RXRG gene expression after 48 h.ConclusionsPatients with non-septic shock NTIS showed decreased expression of TH receptors and RXRs, which were not related to increased activation of the NFKB1 pathway. These findings could not be replicated in cultures of HSkMCs incubated in the patient's serum.


1997 ◽  
Vol 17 (12) ◽  
pp. 7195-7207 ◽  
Author(s):  
J S Qi ◽  
V Desai-Yajnik ◽  
Y Yuan ◽  
H H Samuels

Thyroid hormone receptor (T3R) is a member of the steroid hormone receptor gene family of nuclear hormone receptors. In most cells T3R activates gene expression only in the presence of its ligand, L-triiodothyronine (T3). However, in certain cell types (e.g., GH4C1 cells) expression of T3R leads to hormone-independent constitutive activation. This activation by unliganded T3R occurs with a variety of gene promoters and appears to be independent of the binding of T3R to specific thyroid hormone response elements (TREs). Previous studies indicate that this constitutive activation results from the titration of an inhibitor of transcription. Since the tumor suppresser p53 is capable of repressing a wide variety of gene promoters, we considered the possibility that the inhibitor is p53. Evidence to support this comes from studies indicating that expression of p53 blocks T3R-mediated constitutive activation in GH4C1 cells. In contrast with hormone-independent activation by T3R, p53 had little or no effect on T3-dependent stimulation which requires TREs. In addition, p53 mutants which oligomerize with wild-type p53 and interfere with its function also increase promoter activity. This enhancement is of similar magnitude to but is not additive with the stimulation mediated by unliganded T3R, suggesting that they target the same factor. Since p53 mutants are known to target wild-type p53 in the cell, this suggests that T3R also interacts with p53 in vivo and that endogenous levels of p53 act to suppress promoter activity. Evidence supporting both functional and physical interactions of T3R and p53 in the cell is presented. The DNA binding domain (DBD) of T3R is important in mediating constitutive activation, and the receptor DBD appears to functionally interact with the N terminus of p53 in the cell. In vitro binding studies indicate that the T3R DBD is important for interaction of T3R with p53 and that this interaction is reduced by T3. These findings are consistent with the in vivo studies indicating that p53 blocks constitutive activation but not ligand-dependent stimulation. These studies provide insight into mechanisms by which unliganded nuclear hormone receptors can modulate gene expression and may provide an explanation for the mechanism of action of the v-erbA oncoprotein, a retroviral homolog of chicken T3R alpha.


2021 ◽  
Author(s):  
Brenda J. Mengeling ◽  
Lara F. Vetter ◽  
J. David Furlow

Thyroid hormone (TH) signaling plays critical roles during vertebrate development, including regulation of skeletal and cartilage growth. TH acts through its receptors (TRs), nuclear hormone receptors (NRs) that heterodimerize with Retinoid-X receptors (RXRs), to regulate gene expression. A defining difference between NR signaling during development compared to in adult tissues, is competence, the ability of the organism to respond to an endocrine signal. Amphibian metamorphosis, especially in Xenopus laevis, the African clawed frog, is a well-established in vivo model for studying the mechanisms of TH action during development. Previously, we have used one-week post-fertilization X. laevis tadpoles, which are only partially competent to TH, to show that in the tail, which is naturally refractive to exogenous T3 at this stage, RXR agonists increase TH competence, and that RXR antagonism inhibits the TH response. Here, we focused on the jaw that undergoes dramatic TH-mediated remodeling during metamorphosis in order to support new feeding and breathing styles. We used a battery of approaches in one-week-old tadpoles, including quantitative morphology, differential gene expression and whole mount cell proliferation assays, to show that both pharmacologic (bexarotene) and environmental (tributyltin) RXR agonists potentiated TH-induced responses but were inactive in the absence of TH; and the RXR antagonist UVI 3003 inhibited TH action. At this young age, the lower jaw has not developed to the point that T3-induced changes produce an adult-like jaw morphology, and we found that increasing TH competence with RXR agonists did not give us a more natural-metamorphic phenotype, even though Bex and TBT significantly potentiated cellular proliferation and the TH induction of runx2, a transcription factor critical for developing cartilage and bone. Prominent targets of RXR-mediated TH potentiation were members of the matrix metalloprotease family, suggesting that RXR potentiation may emphasize pathways responsible for rapid changes during development.


2021 ◽  
Vol 5 (Supplement_1) ◽  
pp. A980-A980
Author(s):  
Yehuda Shabtai ◽  
Nagaswaroop K Nagaraj ◽  
Kirill Batmanov ◽  
Young-Wook Cho ◽  
Yuxia Guan ◽  
...  

Abstract Thyroid hormone receptors (TR) are transcription factors that mediate the effects of thyroid hormones (TH) in development, physiology, and metabolism. TR canonically activates gene expression via a “switch” whereby TH converts chromatin-bound TR from a transcriptional repressor to an activator. In this model, the unliganded repressed state is mediated by binding of the nuclear receptor corepressor (NCoR), while the TH-activated state is caused by dismissal of NCoR and stabilization of binding of coactivators including CREB-binding protein (CBP). TH also negatively regulates gene expression, although the mechanism is controversial. Elucidation of the TR transcriptional mechanism in vivo has been hampered by the low concentration of endogenous TRs and the unavailability of high quality antibodies. To address this, we generated a mouse line in which endogenous TRβ1 was epitope-tagged to allow precise analysis at physiological levels, and explored TR function in liver where the actions of TR regulate body weight, cholesterol, and liver fat. ChIP-seq analysis revealed TRβ binding at genomic sites with epigenomic characteristics of enhancers, at sequences enriched for the canonical DR4 motif bound by TR with its RXR partner, at both positively- as well as negatively-regulated genes. The NCoR/HDAC3 corepressor complex was reduced but not completely dismissed by TH at positive enhancers and, surprisingly, at enhancers associated with negatively. CBP binding was also not “all or none” but, rather, shifted toward increased binding at enhancers in their active state, i.e., in the presence of TH for activated genes, but in the absence of TH for repressed genes. Thus, TH action is due to a shift, not an on/off switch, in coregulator association with TRβ-regulated enhancers determines their activity and transcriptional outcomes.


2006 ◽  
Vol 13 ◽  
pp. S134
Author(s):  
Zahra Hassani ◽  
Gladys Alfama ◽  
Jean-Christophe François ◽  
Carinne Giovannangeli ◽  
Barbara A. Demeneix

1991 ◽  
Vol 11 (10) ◽  
pp. 5079-5089 ◽  
Author(s):  
D E Banker ◽  
J Bigler ◽  
R N Eisenman

The c-erbA proto-oncogene encodes the thyroid hormone receptor, a ligand-dependent transcription factor which plays an important role in vertebrate growth and development. To define the role of the thyroid hormone receptor in developmental processes, we have begun studying c-erbA gene expression during the ontogeny of Xenopus laevis, an organism in which thyroid hormone has well-documented effects on morphogenesis. Using polymerase chain reactions (PCR) as a sensitive assay of specific gene expression, we found that polyadenylated erbA alpha RNA is present in Xenopus cells at early developmental stages, including the fertilized egg, blastula, gastrula, and neurula. By performing erbA alpha-specific PCR on reverse-transcribed RNAs from high-density sucrose gradient fractions prepared from early-stage embryos, we have demonstrated that these erbA transcripts are recruited to polysomes. Therefore, erbA is expressed in Xenopus development prior to the appearance of the thyroid gland anlage in tailbud-stage embryos. This implies that erbA alpha/thyroid hormone receptors may play ligand-independent roles during the early development of X. laevis. Quantitative PCR revealed a greater than 25-fold range in the steady-state levels of polyadenylated erbA alpha RNA across early stages of development, as expressed relative to equimolar amounts of total embryonic RNA. Substantial increases in the levels of erbA alpha RNA were noted at stages well after the onset of zygotic transcription at the mid-blastula transition, with accumulation of erbA alpha transcripts reaching a relative maximum in advance of metamorphosis. We also show that erbA alpha RNAs are expressed unequally across Xenopus neural tube embryos. This differential expression continues through later stages of development, including metamorphosis. This finding suggests that erbA alpha/thyroid hormone receptors may play roles in tissue-specific processes across all of Xenopus development.


1993 ◽  
Vol 13 (3) ◽  
pp. 1719-1727
Author(s):  
C S Suen ◽  
W W Chin

The expression of the rat growth hormone (rGH) gene in the anterior pituitary gland is modulated by Pit-1/GHF-1, a pituitary-specific transcription factor, and by other more widely distributed factors, such as the thyroid hormone receptors (TRs), Sp1, and the glucocorticoid receptor. Thyroid hormone (T3)-mediated transcriptional stimulation of rGH gene expression has been extensively studied in vivo and in vitro including the measurements of (i) rGH mRNA by blot hybridization, (ii) transcriptional rate of rGH gene by nuclear run-on, and (iii) reporter gene expression in which a chimeric plasmid containing 5'-flanking sequences of the rGH gene linked to a reporter gene has been transfected either stably or transiently into pituitary and/or nonpituitary cells. From these studies, it has been suggested that the Pit-1/GHF-1 binding site is necessary for full T3 action. We developed a cell-free in vitro transcription system to examine further the roles of the TRs and Pit-1/GHF-1 in rGH gene activation. Using GH3 nuclear extract as a source of TRs and Pit-1/GHF-1, this in vitro transcription assay showed that T3 stimulation of rGH promoter activity is dependent on the addition of T3 to the GH3 nuclear extract. This transcriptional stimulation was augmented with increasing concentrations of ligand and was T3, but not T4 or reverse T3, specific. T3-mediated stimulation of rGH promoter activity was completely abolished by preincubation of the nuclear extract with rGH-thyroid hormone response element (-200 to -160) but not with Pit-1/GHF-1 (-137 to -65) oligonucleotides. Further, neither deletion of both Pit-1/GHF-1 binding sites nor mutation of the proximal Pit-1/GHF-1 binding site from the rGH promoter abrogated the T3 effect. These results provide evidence that T3-stimulated rGH promoter activity is independent of Pit-1/GHF-1 and raise the possibility that the stimulation of rGH gene expression by T3 might involve direct interaction of TRs with the general transcriptional apparatus.


Development ◽  
1998 ◽  
Vol 125 (18) ◽  
pp. 3709-3718 ◽  
Author(s):  
M. Knipper ◽  
C. Bandtlow ◽  
L. Gestwa ◽  
I. Kopschall ◽  
K. Rohbock ◽  
...  

All cranial nerves, as well as the VIIIth nerve which invades the cochlea, have a proximal end in which myelin is formed by Schwann cells and a distal end which is surrounded by oligodendrocytes. The question which arises in this context is whether peripheral and central parts of these nerves myelinate simultaneously or subsequently and whether the myelination of either of the parts occurs simultaneously at the onset of the cochlea function and under the control of neuronal activity. In the present paper, we examined the relative time course of the myelinogenesis of the distal part of the VIIIth nerve by analyzing the expression of peripheral protein P0, proteolipid protein and myelin basic protein. To our surprise, we observed that the expression of myelin markers in the peripheral and central part of the intradural part of the VIIIth nerve started simultaneously, from postnatal day 2 onwards, long before the onset of cochlea function. The expression rapidly achieved saturation levels on the approach to postnatal day 12, the day on which the cochlea function commenced. Because of its importance for the neuronal and morphological maturation of the cochlea during this time, an additional role of thyroid hormone in cochlear myelinogenesis was considered. Indeed, it transpires that this hormone ensures the rapid accomplishment of glial gene expression, not only in the central but also in the peripheral part of the cochlea. Furthermore, an analysis of the thyroid hormone receptors, TRaplha and TRbeta, indicates that TRbeta is necessary for myelinogenesis of the VIIIth nerve. Rapid thyroid hormone-dependent saturation of myelin marker gene expression in Schwann cells and oligodendrocytes of the VIIIth nerve may guarantee nerve conduction and synchronized impulse transmission at the onset of hearing. The thyroid hormone-dependent commencement of nerve conduction is discussed in connection with the patterning refinement of central auditory pathways and the acquisition of deafness.


2011 ◽  
Vol 25 (6) ◽  
pp. 908-921 ◽  
Author(s):  
Laura Fozzatti ◽  
Changxue Lu ◽  
Dong-Wook Kim ◽  
Sheue-yann Cheng

Abstract Studies using mice deficient in thyroid hormone receptors (TR) indicate that the two TR isoforms, TRα1 and TRβ1, in addition to mediating overlapping biological activities of the thyroid hormone, T3, also mediate distinct functions. Mice harboring an identical dominant negative mutation (denoted PV) at the C terminus of TRα1 (Thra1PV mice) or β1 (ThrbPV mice) also exhibit distinct phenotypes. These knockin mutant mice provide an opportunity to understand the molecular basis of isoform-dependent functions in vivo. Here we tested the hypothesis that the distinct functions of TR mutant isoforms are directed by a subset of nuclear regulatory proteins. Tandem-affinity chromatography of HeLa nuclear extracts showed that distinct 33 nuclear proteins including nuclear receptor corepressor (NCoR1) and six other proteins preferentially associated with TRα1PV or TRβ1PV, respectively. These results indicate that recruitment of nuclear regulatory proteins by TR mutants is subtype dependent. The involvement of NCoR1 in mediating the distinct liver phenotype of Thra1PV and ThrbPV mice was further explored. NCoR1 preferentially interacted with TRα1PV rather than with TRβ1PV. NCoR1 was recruited more avidly to the thyroid hormone response element-bound TRα1PV than to TRβ1PV in the promoter of the CCAAT/enhancer-binding protein α gene to repress its expression in the liver of Thra1PV mice, but not in ThrbPV mice. This preferential recruitment of NCoR1 by mutant isoforms could contribute, at least in part, to the distinct liver lipid phenotype of these mutant mice. The present study highlights a novel mechanism by which TR isoforms direct their selective functions via preferential recruitment of a subset of nuclear coregulatory proteins.


Sign in / Sign up

Export Citation Format

Share Document