scholarly journals Jet timing

2022 ◽  
Vol 2022 (1) ◽  
Author(s):  
Wen Han Chiu ◽  
Zhen Liu ◽  
Matthew Low ◽  
Lian-Tao Wang

Abstract The measurement of the arrival time of a particle, such as a lepton, a photon, or a pion, reaching the detector provides valuable information. A similar measurement for a hadronic final state, however, is much more challenging as one has to extract the relevant information from a collection of particles. In this paper, we explore various possibilities in defining the time of a jet through the measurable arrival times of the jet constituents. We find that a definition of jet time based on a transverse momentum weighted sum of the times of the constituents has the best performance. For prompt jets, the performance depends on the jet trajectory. For delayed jets, the performance depends on the trajectory of the jet, the trajectory of the mother particle, and the location of the displaced vertex. Compared to the next-best-performing jet time definition, the transverse momentum weighted sum has roughly a factor of ten times better jet time resolution. We give a detailed discussion of the relevant effects and characterize the full geometrical dependence of the performance. These results highlight the critical importance of using a proper definition of jet time with its corresponding detector-dependent calibration and the exciting possibility of deepening our understanding of jets in the time domain.

2021 ◽  
Vol 81 (7) ◽  
Author(s):  
David Arturo Amor-Quiroz ◽  
Matthias Burkardt ◽  
William Focillon ◽  
Cédric Lorcé

AbstractWe present an analytic two-loop calculation within the scalar diquark model of the potential linear and angular momenta, defined as the difference between the Jaffe-Manohar and Ji notions of linear and angular momenta. As expected by parity and time-reversal symmetries, a direct calculation confirms that the potential transverse momentum coincides with the Jaffe-Manohar (or canonical) definition of average quark transverse momentum, also known as the quark Sivers shift. We examine whether initial/final-state interactions at the origin of the Sivers asymmetry can also generate a potential angular momentum in the scalar diquark model.


2021 ◽  
Vol 13 (8) ◽  
pp. 4186
Author(s):  
Abdulhakeem Raji ◽  
Abeer Hassan

This paper adopted a case study approach to investigate the sustainability practices of a Scottish university in order to understand if sustainability forms part of its central policy agenda. As such, the paper focuses on the levels of awareness and disclosure of their sustainable practices, measuring the impacts and effectiveness of those initiatives. This paper introduces signaling theory to explore the idea that appropriate communication via integrated thinking can close the gap between the organization and its stakeholders. We believe that the provision of this relevant information will lead to better communication between the organization and its stakeholders, supporting a signaling theory interpretation. Therefore, we are suggesting that integrated thinking is an internal process that organizations can follow to increase the level of disclosure as a communication tool with stakeholders. From the literature reviewed, four themes were identified (definition of university sustainability, sustainability awareness, disclosure framework within universities, and level of accountability). The research adopted a pragmatic view and conducted individual interviews with participants belonging to three stakeholder groups (members of the university’s senior management, the governing council, and the student union executive). Although this study focused on just one Scottish university, it should still provide some insight for the better understanding of the underpinning issues surrounding the sustainability accountability practices of Scottish universities in general. The research findings indicated that the university prioritized only two sustainability dimensions—economic and environmental—and that the university still perceived sustainability as a voluntary exercise. Additionally, it is evident that the university had no framework in place for measuring its sustainability delivery—and therefore had no established medium of communicating these activities to its stakeholders. Moreover, research findings showed that the social and educational context of sustainability was lacking at the university. The university has done little or nothing to educate its stakeholders on sustainability.


2021 ◽  
Vol 11 (2) ◽  
pp. 790
Author(s):  
Pablo Venegas ◽  
Rubén Usamentiaga ◽  
Juan Perán ◽  
Idurre Sáez de Ocáriz

Infrared thermography is a widely used technology that has been successfully applied to many and varied applications. These applications include the use as a non-destructive testing tool to assess the integrity state of materials. The current level of development of this application is high and its effectiveness is widely verified. There are application protocols and methodologies that have demonstrated a high capacity to extract relevant information from the captured thermal signals and guarantee the detection of anomalies in the inspected materials. However, there is still room for improvement in certain aspects, such as the increase of the detection capacity and the definition of a detailed characterization procedure of indications, that must be investigated further to reduce uncertainties and optimize this technology. In this work, an innovative thermographic data analysis methodology is proposed that extracts a greater amount of information from the recorded sequences by applying advanced processing techniques to the results. The extracted information is synthesized into three channels that may be represented through real color images and processed by quaternion algebra techniques to improve the detection level and facilitate the classification of defects. To validate the proposed methodology, synthetic data and actual experimental sequences have been analyzed. Seven different definitions of signal-to-noise ratio (SNR) have been used to assess the increment in the detection capacity, and a generalized application procedure has been proposed to extend their use to color images. The results verify the capacity of this methodology, showing significant increments in the SNR compared to conventional processing techniques in thermographic NDT.


Author(s):  
Maria J. Perez-Villadóniga ◽  
Ana Rodriguez-Alvarez ◽  
David Roibas

AbstractResident physicians play a double role in hospital activity. They participate in medical practices and thus, on the one hand, they should be considered as an input. Also, they are medical staff in training and, on the other hand, must be considered as an output. The net effect on hospital activities should therefore be empirically determined. Additionally, when considering their role as active physicians, a natural hypothesis is that resident physicians are not more productive than senior ones. This is a property that standard logarithmic production functions (including Cobb–Douglas and Translog functional forms) cannot verify for the whole technology set. Our main contribution is the development of a Translog modification, which implies the definition of the input “doctors” as a weighted sum of senior and resident physicians, where the weights are estimated from the empirical application. This modification of the standard Translog is able, under suitable parameter restrictions, to verify our main hypothesis across the whole technology set while determining if the net effect of resident physicians in hospitals’ production should be associated to an output or to an input. We estimate the resulting output distance function frontier with a sample of Spanish hospitals. Our findings show that the overall contribution of resident physicians to hospitals’ production allows considering them as an input in most cases. In particular, their average productivity is around 37% of that corresponding to senior physicians.


2021 ◽  
Vol 2 (3) ◽  
pp. 431-441
Author(s):  
Odysseas Kosmas

In previous works we developed a methodology of deriving variational integrators to provide numerical solutions of systems having oscillatory behavior. These schemes use exponential functions to approximate the intermediate configurations and velocities, which are then placed into the discrete Lagrangian function characterizing the physical system. We afterwards proved that, higher order schemes can be obtained through the corresponding discrete Euler–Lagrange equations and the definition of a weighted sum of “continuous intermediate Lagrangians” each of them evaluated at an intermediate time node. In the present article, we extend these methods so as to include Lagrangians of split potential systems, namely, to address cases when the potential function can be decomposed into several components. Rather than using many intermediate points for the complete Lagrangian, in this work we introduce different numbers of intermediate points, resulting within the context of various reliable quadrature rules, for the various potentials. Finally, we assess the accuracy, convergence and computational time of the proposed technique by testing and comparing them with well known standards.


2015 ◽  
Vol 2015 ◽  
pp. 1-9 ◽  
Author(s):  
Julio Ramírez-Pacheco ◽  
Homero Toral-Cruz ◽  
Luis Rizo-Domínguez ◽  
Joaquin Cortez-Gonzalez

This paper defines the generalized wavelet Fisher information of parameterq. This information measure is obtained by generalizing the time-domain definition of Fisher’s information of Furuichi to the wavelet domain and allows to quantify smoothness and correlation, among other signals characteristics. Closed-form expressions of generalized wavelet Fisher information for1/fαsignals are determined and a detailed discussion of their properties, characteristics and their relationship with waveletq-Fisher information are given. Information planes of1/fsignals Fisher information are obtained and, based on these, potential applications are highlighted. Finally, generalized wavelet Fisher information is applied to the problem of detecting and locating weak structural breaks in stationary1/fsignals, particularly for fractional Gaussian noise series. It is shown that by using a joint Fisher/F-Statistic procedure, significant improvements in time and accuracy are achieved in comparison with the sole application of theF-statistic.


2004 ◽  
Vol 19 (25) ◽  
pp. 1881-1902 ◽  
Author(s):  
TANCREDI CARLI ◽  
DOMINIK DANNHEIM ◽  
LORENZO BELLAGAMBA

Striking events with isolated charged leptons, large missing transverse momentum and large transverse momentum of the hadronic final state [Formula: see text] were observed at the electron proton collider HERA in a data sample corresponding to an integrated luminosity of about 130 pb-1. The H1 collaboration observed 11 events with isolated electrons or muons and with [Formula: see text]. Only 3.4±0.6 events were expected from Standard Model (SM) processes. Six of these events have [Formula: see text], while 1.3±0.3 events were expected. The ZEUS collaboration observed good agreement with the SM. However, ZEUS found two events with a similar event topology, but tau leptons instead of electrons or muons in the final state. Only 0.2±0.05 events were expected from SM processes. For various hypotheses, the compatibility of the experimental results was investigated with respect to the SM and with respect to possible explanations beyond the SM. Prospects for the high-luminosity HERA-II data taking period are given.


Author(s):  
MIGUEL G. ECHEVARRÍA ◽  
AHMAD IDILBI ◽  
IGNAZIO SCIMEMI

We consider the definition of unpolarized transverse-momentum-dependent parton distribution functions while staying on-the-light-cone. By imposing a requirement of identical treatment of two collinear sectors, our approach, compatible with a generic factorization theorem with the soft function included, is valid for all non-ultra-violet regulators (as it should), an issue which causes much confusion in the whole field. We explain how large logarithms can be resummed in a way which can be considered as an alternative to the use of Collins-Soper evolution equation. The evolution properties are also discussed and the gauge-invariance, in both classes of gauges, regular and singular, is emphasized.


2014 ◽  
Vol 9 ◽  
Author(s):  
Roberto Tramarin ◽  
Mario Polverino ◽  
Maurizio Volterrani ◽  
Bruna Girardi ◽  
Claudio Chimini ◽  
...  

Background: Cardiovascular and respiratory diseases are leading causes of morbidity and their co-occurrence has important implications in mortality and other outcomes. Even the most recent guidelines do not reliably address clinical, prognostic, and therapeutic concerns due to the overlap of respiratory and cardiac diseases. Study objectives and design: In order to evaluate in the reality of clinical practice the epidemiology and the reciprocal impact of cardio-pulmonary comorbidity on the clinical management, diagnostic workup and treatment, 1,500 cardiac and 1,500 respiratory inpatients, admitted in acute and rehabilitation units, will be enrolled in a multicenter, nationwide, prospective observational study. For this purpose, each center will enroll at least 50 consecutive patients. At discharge, data analysis will be aimed at the definition of cardiac and pulmonary inpatient comorbidity prevalence, demographic characteristics, length of hospital stay, and risk factors, taking into account also procedures, pharmacological and non-pharmacological treatment, and follow up in patients with cardio-respiratory comorbidity. Conclusions: The purely observational design of the study aims to give new relevant information on the assessment and management of overlapping patients in real life clinical practice, and new insight for improvement and implementation of current guidelines on the management of individual diseases.


Sign in / Sign up

Export Citation Format

Share Document