scholarly journals The present and future of four top operators

2021 ◽  
Vol 2021 (2) ◽  
Author(s):  
Giovanni Banelli ◽  
Ennio Salvioni ◽  
Javi Serra ◽  
Tobias Theil ◽  
Andreas Weiler

Abstract We study the phenomenology of a strongly-interacting top quark at future hadron and lepton colliders, showing that the characteristic four-top contact operators give rise to the most significant effects. We demonstrate the extraordinary potential of a 100 TeV proton-proton collider to directly test such non-standard interactions in four-top production, a process that we thoroughly analyze in the same-sign dilepton and trilepton channels, and explore in the fully hadronic channel. Furthermore, high-energy electron-positron colliders, such as CLIC or the ILC, are shown to exhibit an indirect yet remarkable sensitivity to four-top operators, since these constitute, via renormalization group evolution, the leading new-physics deformations in top-quark pair production. We investigate the impact of our results on the parameter space of composite Higgs models with a strongly-coupled (right-handed) top quark, finding that four-top probes provide the best sensitivity on the compositeness scale at the future energy frontier. In addition, we investigate mild yet persisting LHC excesses in multilepton plus jets final states, showing that they can be consistently described in the effective field theory of such a new-physics scenario.

2021 ◽  
Vol 2021 (3) ◽  
Author(s):  
A. M. Sirunyan ◽  
◽  
A. Tumasyan ◽  
W. Adam ◽  
T. Bergauer ◽  
...  

Abstract Events containing one or more top quarks produced with additional prompt leptons are used to search for new physics within the framework of an effective field theory (EFT). The data correspond to an integrated luminosity of 41.5 fb−1 of proton-proton collisions at a center-of-mass energy of 13 TeV at the LHC, collected by the CMS experiment in 2017. The selected events are required to have either two leptons with the same charge or more than two leptons; jets, including identified bottom quark jets, are also required, and the selected events are divided into categories based on the multiplicities of these objects. Sixteen dimension-six operators that can affect processes involving top quarks produced with additional charged leptons are considered in this analysis. Constructed to target EFT effects directly, the analysis applies a novel approach in which the observed yields are parameterized in terms of the Wilson coefficients (WCs) of the EFT operators. A simultaneous fit of the 16 WCs to the data is performed and two standard deviation confidence intervals for the WCs are extracted; the standard model expectations for the WC values are within these intervals for all of the WCs probed.


2020 ◽  
Vol 2020 (8) ◽  
Author(s):  
Cari Cesarotti ◽  
Jesse Thaler

Abstract We introduce a new event shape observable — event isotropy — that quantifies how close the radiation pattern of a collider event is to a uniform distribution. This observable is based on a normalized version of the energy mover’s distance, which is the minimum “work” needed to rearrange one radiation pattern into another of equal energy. We investigate the utility of event isotropy both at electron-positron colliders, where events are compared to a perfectly spherical radiation pattern, as well as at proton-proton colliders, where the natural comparison is to either cylindrical or ring-like patterns. Compared to traditional event shape observables like sphericity and thrust, event isotropy exhibits a larger dynamic range for high-multiplicity events. This enables event isotropy to not only distinguish between dijet and multijet processes but also separate uniform N-body phase space configurations for different values of N. As a key application of this new observable, we study its performance to characterize strongly-coupled new physics scenarios with isotropic collider signatures.


2021 ◽  
Vol 81 (8) ◽  
Author(s):  
J. A. Aguilar-Saavedra

AbstractJet tagging has become an essential tool for new physics searches at the high-energy frontier. For jets that contain energetic charged leptons we introduce Feature Extended Supervised Tagging (FEST) which, in addition to jet substructure, considers the features of the charged lepton within the jet. With this method we build dedicated taggers to discriminate among boosted $$H \rightarrow \ell \nu q {\bar{q}}$$ H → ℓ ν q q ¯ , $$t \rightarrow \ell \nu b$$ t → ℓ ν b , and QCD jets (with $$\ell $$ ℓ an electron or muon). The taggers have an impressive performance, allowing for overall light jet rejection factors of $$10^4-10^5$$ 10 4 - 10 5 , for top quark/Higgs boson efficiencies of 0.5. The taggers are also excellent in the discrimination of Higgs bosons from top quarks and vice versa, for example rejecting top quarks by factors of 100–300 for Higgs boson efficiencies of 0.5. We demonstrate the potential of these taggers to improve the sensitivity to new physics by using as example a search for a new $$Z'$$ Z ′ boson decaying into ZH, in the fully-hadronic final state.


2019 ◽  
Vol 79 (11) ◽  
Author(s):  
A. M. Sirunyan ◽  
◽  
A. Tumasyan ◽  
W. Adam ◽  
F. Ambrogi ◽  
...  

Abstract A search for new physics in top quark production is performed in proton-proton collisions at $$13\,\text {TeV} $$13TeV. The data set corresponds to an integrated luminosity of $$35.9{\,\text {fb}^{-1}} $$35.9fb-1 collected in 2016 with the CMS detector. Events with two opposite-sign isolated leptons (electrons or muons), and $$\mathrm{b}$$b quark jets in the final state are selected. The search is sensitive to new physics in top quark pair production and in single top quark production in association with a $$\mathrm{W}$$W boson. No significant deviation from the standard model expectation is observed. Results are interpreted in the framework of effective field theory and constraints on the relevant effective couplings are set, one at a time, using a dedicated multivariate analysis. This analysis differs from previous searches for new physics in the top quark sector by explicitly separating $$\mathrm{t}\mathrm{W}$$tW from $$\mathrm{t}{\bar{\mathrm{t}}}$$tt¯ events and exploiting the specific sensitivity of the $$\mathrm{t}\mathrm{W}$$tW process to new physics.


2021 ◽  
Vol 2021 (7) ◽  
Author(s):  
Admir Greljo ◽  
Shayan Iranipour ◽  
Zahari Kassabov ◽  
Maeve Madigan ◽  
James Moore ◽  
...  

Abstract The high-energy tails of charged- and neutral-current Drell-Yan processes provide important constraints on the light quark and anti-quark parton distribution functions (PDFs) in the large-x region. At the same time, short-distance new physics effects such as those encoded by the Standard Model Effective Field Theory (SMEFT) would induce smooth distortions to the same high-energy Drell-Yan tails. In this work, we assess for the first time the interplay between PDFs and EFT effects for high-mass Drell-Yan processes at the LHC and quantify the impact that the consistent joint determination of PDFs and Wilson coefficients has on the bounds derived for the latter. We consider two well-motivated new physics scenarios: 1) electroweak oblique corrections ($$ \hat{W},\hat{Y} $$ W ̂ , Y ̂ ) and 2) four-fermion interactions potentially related to the LHCb anomalies in R(K(*)). We account for available Drell-Yan data, both from unfolded cross sections and from searches, and carry out dedicated projections for the High-Luminosity LHC. Our main finding is that, while the interplay between PDFs and EFT effects remains moderate for the current dataset, it will become a significant challenge for EFT analyses at the HL-LHC.


2020 ◽  
Vol 2020 (12) ◽  
Author(s):  
Roberto Mondini ◽  
Ulrich Schubert ◽  
Ciaran Williams

Abstract In this paper we present a fully-differential calculation for the contributions to the partial widths H →$$ b\overline{b} $$ b b ¯ and H →$$ c\overline{c} $$ c c ¯ that are sensitive to the top quark Yukawa coupling yt to order $$ {\alpha}_s^3 $$ α s 3 . These contributions first enter at order $$ {\alpha}_s^2 $$ α s 2 through terms proportional to ytyq (q = b, c). At order $$ {\alpha}_s^3 $$ α s 3 corrections to the mixed terms are present as well as a new contribution proportional to $$ {y}_t^2 $$ y t 2 . Our results retain the mass of the final-state quarks throughout, while the top quark is integrated out resulting in an effective field theory (EFT). Our results are implemented into a Monte Carlo code allowing for the application of arbitrary final-state selection cuts. As an example we present differential distributions for observables in the Higgs boson rest frame using the Durham jet clustering algorithm. We find that the total impact of the top-induced (i.e. EFT) pieces is sensitive to the nature of the final-state cuts, particularly b-tagging and c-tagging requirements. For bottom quarks, the EFT pieces contribute to the total width (and differential distributions) at around the percent level. The impact is much bigger for the H →$$ c\overline{c} $$ c c ¯ channel, with effects as large as 15%. We show however that their impact can be significantly reduced by the application of jet-tagging selection cuts.


2021 ◽  
Vol 2021 (2) ◽  
Author(s):  
Kaustubh Agashe ◽  
Peizhi Du ◽  
Majid Ekhterachian ◽  
Soubhik Kumar ◽  
Raman Sundrum

Abstract We study the cosmological transition of 5D warped compactifications, from the high-temperature black-brane phase to the low-temperature Randall-Sundrum I phase. The transition proceeds via percolation of bubbles of IR-brane nucleating from the black-brane horizon. The violent bubble dynamics can be a powerful source of observable stochastic gravitational waves. While bubble nucleation is non-perturbative in 5D gravity, it is amenable to semiclassical treatment in terms of a “bounce” configuration interpolating between the two phases. We demonstrate how such a bounce configuration can be smooth enough to maintain 5D effective field theory control, and how a simple ansatz for it places a rigorous lower-bound on the transition rate in the thin-wall regime, and gives plausible estimates more generally. When applied to the Hierarchy Problem, the minimal Goldberger-Wise stabilization of the warped throat leads to a slow transition with significant supercooling. We demonstrate that a simple generalization of the Goldberger-Wise potential modifies the IR-brane dynamics so that the transition completes more promptly. Supercooling determines the dilution of any (dark) matter abundances generated before the transition, potentially at odds with data, while the prompter transition resolves such tensions. We discuss the impact of the different possibilities on the strength of the gravitational wave signals. Via AdS/CFT duality the warped transition gives a theoretically tractable holographic description of the 4D Composite Higgs (de)confinement transition. Our generalization of the Goldberger-Wise mechanism is dual to, and concretely models, our earlier proposal in which the composite dynamics is governed by separate UV and IR RG fixed points. The smooth 5D bounce configuration we introduce complements the 4D dilaton/radion dominance derivation presented in our earlier work.


Author(s):  
Subhaditya Bhattacharya ◽  
José Wudka

Standard Model (SM) of particle physics has achieved enormous success in describing the interactions among the known fundamental constituents of nature, yet it fails to describe phenomena for which there is very strong experimental evidence, such as the existence of dark matter, and which point to the existence of new physics not included in that model; beyond its existence, experimental data, however, have not provided clear indications as to the nature of that new physics. The effective field theory (EFT) approach, the subject of this review, is designed for this type of situations; it provides a consistent and unbiased framework within which to study new physics effects whose existence is expected but whose detailed nature is known very imperfectly. We will provide a description of this approach together with a discussion of some of its basic theoretical aspects. We then consider applications to high-energy phenomenology and conclude with a discussion of the application of EFT techniques to the study of dark matter physics and its possible interactions with the SM. In several of the applications we also briefly discuss specific models that are ultraviolet complete and may realize the effects described by the EFT.


2021 ◽  
Vol 81 (7) ◽  
Author(s):  
Giuseppe Bevilacqua ◽  
Huan-Yu Bi ◽  
Heribertus Bayu Hartanto ◽  
Manfred Kraus ◽  
Jasmina Nasufi ◽  
...  

AbstractRecent discrepancies between theoretical predictions and experimental data in multi-lepton plus b-jets analyses for the $$t{\bar{t}}W^\pm $$ t t ¯ W ± process, as reported by the ATLAS collaboration, have indicated that more accurate theoretical predictions and high precision observables are needed to constrain numerous new physics scenarios in this channel. To this end we employ NLO QCD computations with full off-shell top quark effects included to provide theoretical predictions for the $$\mathcal{R}= \sigma _{t{\bar{t}}W^+}/\sigma _{t{\bar{t}}W^-}$$ R = σ t t ¯ W + / σ t t ¯ W - cross section ratio at the LHC with $$\sqrt{s}=13$$ s = 13 TeV. Depending on the transverse momentum cut on the b-jet we obtain 2–3% theoretical precision on $$\mathcal{R}$$ R , which should help to shed some light on new physics effects that can reveal themselves only once sufficiently precise Standard Model theoretical predictions are available. Furthermore, triggered by these discrepancies we reexamine the charge asymmetry of the top quark and its decay products in the $$t{\bar{t}}W^\pm $$ t t ¯ W ± production process. In the case of charge asymmetries, that are uniquely sensitive to the chiral nature of possible new physics in this channel, theoretical uncertainties below 15% are obtained. Additionally, the impact of the top quark decay modelling is scrutinised by explicit comparison with predictions in the narrow-width approximation.


2019 ◽  
Vol 206 ◽  
pp. 08001
Author(s):  
Tadeusz Lesiak

A future giant electron-positron collider, operating at the energy frontier, is a natural proposal in order to push particle physics into new regime of precise measurements, in particular in the sectors of electroweak observables and Higgs boson parameters. The four projects of such accelerators: two linear (ILC and CLIC) and two circular (FCC and CEPC) are currently in various stages of development. In view of the update of European HEP strategy for particle physics and expectations of important decisions from Japan, China and USA, the next few years will be critical as far as the decisions about the construction of such colliders are concerned. The paper concisely reviews the relevant aspects and challenges of the proposed accelerators and detectors along with the presumed schedules of construction and operation. The motivation and very attractive physics program for new e+e− colliders, spanning in particular perspectives in Higgs, electroweak, and neutrino sectors, together with expectations of searches for New Physics, will be discussed as well.


Sign in / Sign up

Export Citation Format

Share Document