scholarly journals Holographic complexity of LST and single trace $$ T\overline{T} $$

2021 ◽  
Vol 2021 (3) ◽  
Author(s):  
Soumangsu Chakraborty ◽  
Gaurav Katoch ◽  
Shubho R. Roy

Abstract In this work, we continue our study of string theory in the background that interpolates between AdS3 in the IR to flat spacetime with a linear dilaton in the UV. The boundary dual theory interpolates between a CFT2 in the IR to a certain two-dimensional Little String Theory (LST) in the UV. In particular, we study computational complexity of such a theory through the lens of holography and investigate the signature of non-locality in the short distance behavior of complexity. When the cutoff UV scale is much smaller than the non-locality (Hagedorn) scale, we find exotic quadratic and logarithmic divergences (for both volume and action complexity) which are not expected in a local quantum field theory. We also generalize our computation to include the effects of finite temperature. Up to second order in finite temperature correction, we do not any find newer exotic UV-divergences compared to the zero temperature case.

2019 ◽  
Vol 34 (28) ◽  
pp. 1941004
Author(s):  
Laurent Freidel ◽  
Robert G. Leigh ◽  
Djordje Minic

We summarize our recent work on the foundational aspects of string theory as a quantum theory of gravity. We emphasize the hidden quantum geometry (modular spacetime) behind the generic representation of quantum theory and then stress that the same geometric structure underlies a manifestly T-duality covariant formulation of string theory, that we call metastring theory. We also discuss an effective non-commutative description of closed strings implied by intrinsic non-commutativity of closed string theory. This fundamental non-commutativity is explicit in the metastring formulation of quantum gravity. Finally we comment on the new concept of metaparticles inherent to such an effective non-commutative description in terms of bi-local quantum fields.


2000 ◽  
Vol 15 (11n12) ◽  
pp. 731-735
Author(s):  
E. C. MARINO ◽  
D. G. G. SASAKI

We study the effect of a finite temperature on the correlation function of quantum magnetic vortex lines in the framework of the (3 + 1)-dimensional Abelian Higgs model. The vortex energy is inferred from the large distance behavior of these correlation functions. For large straight vortices of length L, we obtain that the energy is proportional to TL2 differently from the zero temperature result which is proportional to L. The case of closed strings is also analyzed. For T = 0, we evaluate the correlation function and energy of a large ring. Finite closed vortices do not exist as genuine excitations for any temperature.


2020 ◽  
Vol 2020 (9) ◽  
Author(s):  
Soumangsu Chakraborty ◽  
Amit Giveon ◽  
David Kutasov

Abstract String theory on AdS3 has a solvable single-trace irrelevant deformation that is closely related to $$ T\overline{T} $$ T T ¯ . For one sign of the coupling, it leads to an asymptotically linear dilaton spacetime, and a corresponding Hagedorn spectrum. For the other, the resulting spacetime has a curvature singularity at a finite radial location, and an upper bound on the energies of states. Beyond the singularity, the signature of spacetime is flipped and there is an asymptotically linear dilaton boundary at infinity. We study the properties of black holes and fundamental strings in this spacetime, and find a sensible picture. The singularity does not give rise to a hard ultraviolet wall for excitations -one must include the region beyond it to understand the theory. The size of black holes diverges as their energy approaches the upper bound, as does the location of the singularity. Fundamental strings pass smoothly through the singularity, but if their energy is above the upper bound, their trajectories are singular. From the point of view of the boundary at infinity, this background can be thought of as a vacuum of Little String Theory which contains a large number of negative strings.


1994 ◽  
Vol 09 (09) ◽  
pp. 1423-1442 ◽  
Author(s):  
A. GÓMEZ NICOLA ◽  
R. F. ALVAREZ-ESTRADA

Chiral anomalies for Abelian and non-Abelian quantum field theories at finite temperature and density (FTFD) are analyzed in detail in both imaginary and real time (IT and RT) formalisms. IT and RT triangle diagrams and IT functional methods (à la Fujikawa) are used at FTFD. The vector anomaly (the one regarding the lepton and baryon numbers) in the Weinberg–Salam theory, for an arbitrary number of fermion families, is also treated using IT functional methods at FTFD. In all cases, the expressions for the FTFD anomalies (as functions of the corresponding quantities) turn out to be identical to those at zero temperature and density, thereby extending previous results by various authors for the finite temperature and zero density case. Moreover, the independence of anomalies from temperature and density is shown to be consistent, at least in the Abelian case, with the analytic continuation from the IT formulation to the RT one.


2016 ◽  
Vol 31 (20n21) ◽  
pp. 1650122 ◽  
Author(s):  
A. F. Santos ◽  
Faqir C. Khanna

The Gravitoelectromagnetism (GEM) theory is considered in a Lagrangian formulation using the Weyl tensor components. A perturbative approach to calculate processes at zero temperature has been used. Here the GEM at finite temperature is analyzed using Thermo Field Dynamics, real time finite temperature quantum field theory. Transition amplitudes involving gravitons, fermions and photons are calculated for various processes. These amplitudes are likely of interest in astrophysics.


2021 ◽  
Vol 2021 (5) ◽  
Author(s):  
Jeremias Aguilera-Damia ◽  
Louise M. Anderson ◽  
Evan Coleman

Abstract A solvable current-current deformation of the worldsheet theory of strings on AdS3 has been recently conjectured to be dual to an irrelevant deformation of the spacetime orbifold CFT, commonly referred to as single-trace $$ T\overline{T} $$ T T ¯ . These deformations give rise to a family of bulk geometries which realize a non-trivial flow towards the UV. For a particular sign of this deformation, the corresponding three-dimensional geometry approaches AdS3 in the interior, but has a curvature singularity at finite radius, beyond which there are closed timelike curves. It has been suggested that this singularity is due to the presence of “negative branes,” which are exotic objects that generically change the metric signature. We propose an alternative UV-completion for geometries displaying a similar singular behavior by cutting and gluing to a regular background which approaches a linear dilaton vacuum in the UV. In the S-dual picture, a singularity resolution mechanism known as the enhançon induces this transition by the formation of a shell of D5-branes at a fixed radial position near the singularity. The solutions involving negative branes gain a new interpretation in this context.


2014 ◽  
Vol 29 (24) ◽  
pp. 1430049 ◽  
Author(s):  
Chanyong Park

We review interesting results achieved in recent studies on the holographic Lifshitz field theory. The holographic Lifshitz field theory at finite temperature is described by a Lifshitz black brane geometry. The holographic renormalization together with the regularity of the background metric allows to reproduce thermodynamic quantities of the dual Lifshitz field theory where the Bekenstein–Hawking entropy appears as the renormalized thermal entropy. All results satisfy the desired black brane thermodynamics. In addition, hydrodynamic properties are further reviewed in which the holographic retarded Green functions of the current and momentum operators are studied. In a nonrelativistic Lifshitz field theory, intriguingly, there exists a massive quasinormal mode at finite temperature whose effective mass is linearly proportional to temperature. Even at zero temperature and in the nonzero momentum limit, a quasinormal mode still remains unlike the dual relativistic field theory. Finally, we account for how adding impurity modifies the electric property of the nonrelativistic Lifshitz theory.


2003 ◽  
Vol 18 (30) ◽  
pp. 5475-5519 ◽  
Author(s):  
A. V. NESTERENKO

This paper gives an overview of recently developed model for the QCD analytic invariant charge. Its underlying idea is to bring the analyticity condition, which follows from the general principles of local Quantum Field Theory, in perturbative approach to renormalization group (RG) method. The concrete realization of the latter consists in explicit imposition of analyticity requirement on the perturbative expansion of β function for the strong running coupling, with subsequent solution of the corresponding RG equation. In turn, this allows one to avoid the known difficulties originated in perturbative approximation of the RG functions. Ultimately, the proposed approach results in qualitatively new properties of the QCD invariant charge. The latter enables one to describe a wide range of the strong interaction processes both of perturbative and intrinsically nonperturbative nature.


1999 ◽  
Vol 13 (28) ◽  
pp. 3357-3367 ◽  
Author(s):  
A. REBEI ◽  
W. N. G. HITCHON

At finite temperature, a Fermi gas can have states that simultaneously hold a particle and a hole with a finite probability. This gives rise to a new set of diagrams that are absent at zero temperature. The so called "anomalous" diagram is just one of the new diagrams. We have already studied the contribution of these new diagrams to the thermodynamic potential (Phys. Lett.A224, 127 (1996)). Here we continue that work and calculate their effect on the specific heat. We will also calculate the finite temperature contribution of the ring diagrams. We conclude that the ln T behavior of the specific heat due to exchange gets canceled by the new contribution of the new diagrams, and that screening is not essential to resolve this anomaly.


Sign in / Sign up

Export Citation Format

Share Document