scholarly journals Null infinity as an open Hamiltonian system

2021 ◽  
Vol 2021 (4) ◽  
Author(s):  
Wolfgang Wieland

Abstract When a system emits gravitational radiation, the Bondi mass decreases. If the Bondi energy is Hamiltonian, it can thus only be a time-dependent Hamiltonian. In this paper, we show that the Bondi energy can be understood as a time-dependent Hamiltonian on the covariant phase space. Our derivation starts from the Hamiltonian formulation in domains with boundaries that are null. We introduce the most general boundary conditions on a generic such null boundary, and compute quasi-local charges for boosts, energy and angular momentum. Initially, these domains are at finite distance, such that there is a natural IR regulator. To remove the IR regulator, we introduce a double null foliation together with an adapted Newman-Penrose null tetrad. Both null directions are surface orthogonal. We study the falloff conditions for such specific null foliations and take the limit to null infinity. At null infinity, we recover the Bondi mass and the usual covariant phase space for the two radiative modes at the full non-perturbative level. Apart from technical results, the framework gives two important physical insights. First of all, it explains the physical significance of the corner term that is added in the Wald-Zoupas framework to render the quasi-conserved charges integrable. The term to be added is simply the derivative of the Hamiltonian with respect to the background fields that drive the time-dependence of the Hamiltonian. Secondly, we propose a new interpretation of the Bondi mass as the thermodynamical free energy of gravitational edge modes at future null infinity. The Bondi mass law is then simply the statement that the free energy always decreases on its way towards thermal equilibrium.

Author(s):  
Jörg Frauendiener ◽  
Chris Stevens

Abstract How does one compute the Bondi mass on an arbitrary cut of null infinity I when it is not presented in a Bondi system? What then is the correct definition of the mass aspect? How does one normalise an asymptotic translation computed on a cut which is not equipped with the unit-sphere metric? These are questions which need to be answered if one wants to calculate the Bondi-Sachs energy-momentum for a space-time which has been determined numerically. Under such conditions there is not much control over the presentation of I so that most of the available formulations of the Bondi energy-momentum simply do not apply. The purpose of this article is to provide the necessary background for a manifestly conformally invariant and gauge independent formulation of the Bondi energy-momentum. To this end we introduce a conformally invariant version of the GHP formalism to rephrase all the well-known formulae. This leads us to natural definitions for the space of asymptotic translations with its Lorentzian metric, for the Bondi news and the mass-aspect. A major role in these developments is played by the “co-curvature”, a naturally appearing quantity closely related to the Gauß curvature on a cut of I.


2017 ◽  
Vol 27 (01) ◽  
pp. 1730027 ◽  
Author(s):  
Vee-Liem Saw

The cosmological constant [Formula: see text] used to be a freedom in Einstein’s theory of general relativity (GR), where one had a proclivity to set it to zero purely for convenience. The signs of [Formula: see text] or [Formula: see text] being zero would describe universes with different properties. For instance, the conformal structure of spacetime directly depends on [Formula: see text]: null infinity [Formula: see text] is a spacelike, null, or timelike hypersurface, if [Formula: see text], [Formula: see text], or [Formula: see text], respectively. Recent observations of distant supernovae have taught us that our universe expands at an accelerated rate, and this can be accounted for by choosing [Formula: see text] in Einstein’s theory of GR. A quantity that depends on the conformal structure of spacetime, especially on the nature of [Formula: see text], is the Bondi mass which in turn dictates the mass loss of an isolated gravitating system due to energy carried away by gravitational waves. This problem of extending the Bondi mass to a universe with [Formula: see text] has spawned intense research activity over the past several years. Some aspects include a closer inspection on the conformal properties, working with linearization, attempts using a Hamiltonian formulation based on “linearized” asymptotic symmetries, as well as obtaining the general asymptotic solutions of de Sitter-like spacetimes. We consolidate on the progress thus far from the various approaches that have been undertaken, as well as discuss the current open problems and possible directions in this area.


2021 ◽  
Vol 2021 (7) ◽  
Author(s):  
Laurent Freidel ◽  
Roberto Oliveri ◽  
Daniele Pranzetti ◽  
Simone Speziale

Abstract We propose an extension of the BMS group, which we refer to as Weyl BMS or BMSW for short, that includes super-translations, local Weyl rescalings and arbitrary diffeomorphisms of the 2d sphere metric. After generalizing the Barnich-Troessaert bracket, we show that the Noether charges of the BMSW group provide a centerless representation of the BMSW Lie algebra at every cross section of null infinity. This result is tantamount to proving that the flux-balance laws for the Noether charges imply the validity of the asymptotic Einstein’s equations at null infinity. The extension requires a holographic renormalization procedure, which we construct without any dependence on background fields. The renormalized phase space of null infinity reveals new pairs of conjugate variables. Finally, we show that BMSW group elements label the gravitational vacua.


Author(s):  
Flavio Mercati

This chapter explains in detail the current Hamiltonian formulation of SD, and the concept of Linking Theory of which (GR) and SD are two complementary gauge-fixings. The physical degrees of freedom of SD are identified, the simple way in which it solves the problem of time and the problem of observables in quantum gravity are explained, and the solution to the problem of constructing a spacetime slab from a solution of SD (and the related definition of physical rods and clocks) is described. Furthermore, the canonical way of coupling matter to SD is introduced, together with the operational definition of four-dimensional line element as an effective background for matter fields. The chapter concludes with two ‘structural’ results obtained in the attempt of finding a construction principle for SD: the concept of ‘symmetry doubling’, related to the BRST formulation of the theory, and the idea of ‘conformogeometrodynamics regained’, that is, to derive the theory as the unique one in the extended phase space of GR that realizes the symmetry doubling idea.


Author(s):  
Peter Mann

This chapter examines the structure of the phase space of an integrable system as being constructed from invariant tori using the Arnold–Liouville integrability theorem, and periodic flow and ergodic flow are investigated using action-angle theory. Time-dependent mechanics is formulated by extending the symplectic structure to a contact structure in an extended phase space before it is shown that mechanics has a natural setting on a jet bundle. The chapter then describes phase space of integrable systems and how tori behave when time-dependent dynamics occurs. Adiabatic invariance is discussed, as well as slow and fast Hamiltonian systems, the Hannay angle and counter adiabatic terms. In addition, the chapter discusses foliation, resonant tori, non-resonant tori, contact structures, Pfaffian forms, jet manifolds and Stokes’s theorem.


Universe ◽  
2021 ◽  
Vol 7 (7) ◽  
pp. 225
Author(s):  
Giuseppe Bimonte ◽  
Thorsten Emig

The principles of the electromagnetic fluctuation-induced phenomena such as Casimir forces are well understood. However, recent experimental advances require universal and efficient methods to compute these forces. While several approaches have been proposed in the literature, their connection is often not entirely clear, and some of them have been introduced as purely numerical techniques. Here we present a unifying approach for the Casimir force and free energy that builds on both the Maxwell stress tensor and path integral quantization. The result is presented in terms of either bulk or surface operators that describe corresponding current fluctuations. Our surface approach yields a novel formula for the Casimir free energy. The path integral is presented both within a Lagrange and Hamiltonian formulation yielding different surface operators and expressions for the free energy that are equivalent. We compare our approaches to previously developed numerical methods and the scattering approach. The practical application of our methods is exemplified by the derivation of the Lifshitz formula.


2020 ◽  
Vol 27 (6) ◽  
pp. 062504 ◽  
Author(s):  
R. L. Dewar ◽  
J. W. Burby ◽  
Z. S. Qu ◽  
N. Sato ◽  
M. J. Hole

1991 ◽  
Vol 01 (03) ◽  
pp. 667-679 ◽  
Author(s):  
YING-CHENG LAI ◽  
CELSO GREBOGI

We consider the classical scattering of particles in a one-degree-of-freedom, time-dependent Hamiltonian system. We demonstrate that chaotic scattering can be induced by periodic oscillations in the position of the potential. We study the invariant sets on a surface of section for different amplitudes of the oscillating potential. It is found that for small amplitudes, the phase space consists of nonescaping KAM islands and an escaping set. The escaping set is made up of a nonhyperbolic set that gives rise to chaotic scattering and remains of KAM islands. For large amplitudes, the phase space contains a Lebesgue measure zero invariant set that gives rise to chaotic scattering. In this regime, we also discuss the physical origin of the Cantor set responsible for the chaotic scattering and calculate its fractal dimension.


Sign in / Sign up

Export Citation Format

Share Document