scholarly journals Unifying Theory for Casimir Forces: Bulk and Surface Formulations

Universe ◽  
2021 ◽  
Vol 7 (7) ◽  
pp. 225
Author(s):  
Giuseppe Bimonte ◽  
Thorsten Emig

The principles of the electromagnetic fluctuation-induced phenomena such as Casimir forces are well understood. However, recent experimental advances require universal and efficient methods to compute these forces. While several approaches have been proposed in the literature, their connection is often not entirely clear, and some of them have been introduced as purely numerical techniques. Here we present a unifying approach for the Casimir force and free energy that builds on both the Maxwell stress tensor and path integral quantization. The result is presented in terms of either bulk or surface operators that describe corresponding current fluctuations. Our surface approach yields a novel formula for the Casimir free energy. The path integral is presented both within a Lagrange and Hamiltonian formulation yielding different surface operators and expressions for the free energy that are equivalent. We compare our approaches to previously developed numerical methods and the scattering approach. The practical application of our methods is exemplified by the derivation of the Lifshitz formula.

2006 ◽  
Vol 21 (25) ◽  
pp. 5007-5042 ◽  
Author(s):  
B. GEYER ◽  
G. L. KLIMCHITSKAYA ◽  
V. M. MOSTEPANENKO

We review recent results obtained in the physics of the thermal Casimir force acting between two dielectrics, dielectric and metal, and between metal and semiconductor. The detailed derivation for the low-temperature behavior of the Casimir free energy, pressure and entropy in the configuration of two real dielectric plates is presented. For dielectrics with finite static dielectric permittivity it is shown that the Nernst heat theorem is satisfied. Hence, the Lifshitz theory of the van der Waals and Casimir forces is demonstrated to be consistent with thermodynamics. The nonzero dc conductivity of dielectric plates is proved to lead to a violation of the Nernst heat theorem and, thus, is not related to the phenomenon of dispersion forces. The low-temperature asymptotics of the Casimir free energy, pressure and entropy are derived also in the configuration of one metal and one dielectric plate. The results are shown to be consistent with thermodynamics if the dielectric plate possesses a finite static dielectric permittivity. If the dc conductivity of a dielectric plate is taken into account this results in the violation of the Nernst heat theorem. We discuss both the experimental and theoretical results related to the Casimir interaction between metal and semiconductor with different charge carrier density. Discussions in the literature on the possible influence of spatial dispersion on the thermal Casimir force are analyzed. In conclusion, the conventional Lifshitz theory taking into account only the frequency dispersion remains the reliable foundation for the interpretation of all present experiments.


Author(s):  
Serge Reynaud ◽  
Astrid Lambrecht

The Casimir force is an effect of quantum vacuum field fluctuations, with applications in many domains of physics. The ideal expression obtained by Casimir, valid for perfect plane mirrors at zero temperature, has to be modified to take into account the effects of the optical properties of mirrors, thermal fluctuations, and geometry. After a general introduction to the Casimir force and a description of the current state of the art for Casimir force measurements and their comparison with theory, this chapter presents pedagogical treatments of the main features of the theory of Casimir forces for one-dimensional model systems and for mirrors in three-dimensional space.


2002 ◽  
Vol 17 (06n07) ◽  
pp. 798-803 ◽  
Author(s):  
C. VILLARREAL ◽  
R. ESQUIVEL-SIRVENT ◽  
G. H. COCOLETZI

The Casimir force between inhomogeneous slabs that exhibit a band-like structure is calculated. The slabs are made of basic unit cells each made of two layers of different materials. As the number of unit cells increases the Casimir force between the slabs changes, since the reflectivity develops a band-like structure characterized by frequency regions of high reflectivity. This is also evident in the difference of the local density of states between free and boundary distorted vacuum, that becomes maximum at frequencies corresponding to the band gaps. The calculations are restricted to vacuum modes with wave vectors perpendicular to the slabs.


2004 ◽  
Vol 59 (3-4) ◽  
pp. 281-287 ◽  
Author(s):  
Dessislava N. Georgieva ◽  
Nicolay Genov ◽  
Markus Perbandt ◽  
Wolfgang Voelter ◽  
Christian Betzel

Disulfide bonds and calcium ions contribute significantly to the stability of the hemocyanin from the mollusc Rapana thomasiana grosse (gastropod). An extremely powerful protective effect of Ca2+ at a concentration of 100 mᴍ (100% protection) against the destructive effect of reductants like dithiothreitol was observed. This is important for the practical application of molluscan hemocyanins in experimental biochemistry, immunology and medicine. The reduction of the disulfide bonds in the Rapana hemocyanin leads to a 20% decrease of the α-helical structure. The S-S bonds contribute significantly to the free energy of stabilization in water increasing ⊿GD H2O by 6.9 kJ mol-1. The data are related to the X-ray model of the Rapana hemocyanin functional unit RtH2e. The results of this study can be of common validity for related respiratory proteins because the cysteine residues are conserved in all sequences of molluscan hemocyanins published so far.


2020 ◽  
Vol 80 (11) ◽  
Author(s):  
Felipe A. Asenjo ◽  
Sergio A. Hojman

AbstractElectromagnetic waves propagation on either rotating or anisotropic spacetime backgrounds (such as Kerr and Gödel metrics, or Bianchi–I metric) produce a reduction of the magnitude of Casimir forces between plates. These curved spacetimes behave as chiral or birefringent materials producing dispersion of electromagnetic waves, in such a way that right– and left–circularly polarized light waves propagate with different phase velocities. Results are explicitly calculated for discussed cases. The difference on the wavevectors of the two polarized electromagnetic waves produces an abatement of a Casimir force which depends on the interaction between the polarization of electromagnetic waves and the properties of the spacetime.


1997 ◽  
Vol 12 (32) ◽  
pp. 5775-5802 ◽  
Author(s):  
Masao Jinzenji

We calculate correlation functions of topological sigma model (A-model) on Calabi–Yau hypersurfaces in CPN-1 using torus action method. We also obtain path-integral representation of free energy of the theory coupled to gravity.


2002 ◽  
Vol 66 (6) ◽  
Author(s):  
V. B. Bezerra ◽  
G. L. Klimchitskaya ◽  
V. M. Mostepanenko
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document