scholarly journals Revisiting higher-spin gyromagnetic couplings

2021 ◽  
Vol 2021 (6) ◽  
Author(s):  
Raffaele Marotta ◽  
Massimo Taronna ◽  
Mritunjay Verma

Abstract We analyze Bosonic, Heterotic, and Type II string theories compactified on a generic torus having constant moduli. By computing the hamiltonian giving the interaction between massive string excitations and U(1) gauge fields arising from the graviton and Kalb-Ramond field upon compactification, we derive a general formula for such couplings that turns out to be universal in all these theories. We also confirm our result by explicitly evaluating the relevant string three-point amplitudes. From this expression, we determine the gyromagnetic ratio g of massive string states coupled to both gauge-fields. For a generic mixed symmetry state, there is one gyromagnetic coupling associated with each row of the corresponding Young Tableau diagram. For all the states having zero Kaluza Klein or Winding charges, the value of g turns out to be 1. We also explicitly consider totally symmetric and mixed symmetry states (having two rows in the Young diagram) associated with the first Regge-trajectory and obtain their corresponding g value.

2021 ◽  
Vol 2021 (3) ◽  
Author(s):  
Machiko Hatsuda ◽  
Shin Sasaki ◽  
Masaya Yata

Abstract We study the current algebras of the NS5-branes, the Kaluza-Klein (KK) five-branes and the exotic $$ {5}_2^2 $$ 5 2 2 -branes in type IIA/IIB superstring theories. Their worldvolume theories are governed by the six-dimensional $$ \mathcal{N} $$ N = (2, 0) tensor and the $$ \mathcal{N} $$ N = (1, 1) vector multiplets. We show that the current algebras are determined through the S- and T-dualities. The algebras of the $$ \mathcal{N} $$ N = (2, 0) theories are characterized by the Dirac bracket caused by the self-dual gauge field in the five-brane worldvolumes, while those of the $$ \mathcal{N} $$ N = (1, 1) theories are given by the Poisson bracket. By the use of these algebras, we examine extended spaces in terms of tensor coordinates which are the representation of ten-dimensional supersymmetry. We also examine the transition rules of the currents in the type IIA/IIB supersymmetry algebras in ten dimensions. Based on the algebras, we write down the section conditions in the extended spaces and gauge transformations of the supergravity fields.


2021 ◽  
Vol 2021 (3) ◽  
Author(s):  
Adrian David ◽  
Yasha Neiman

Abstract We consider higher-spin gravity in (Euclidean) AdS4, dual to a free vector model on the 3d boundary. In the bulk theory, we study the linearized version of the Didenko-Vasiliev black hole solution: a particle that couples to the gauge fields of all spins through a BPS-like pattern of charges. We study the interaction between two such particles at leading order. The sum over spins cancels the UV divergences that occur when the two particles are brought close together, for (almost) any value of the relative velocity. This is a higher-spin enhancement of supergravity’s famous feature, the cancellation of the electric and gravitational forces between two BPS particles at rest. In the holographic context, we point out that these “Didenko-Vasiliev particles” are just the bulk duals of bilocal operators in the boundary theory. For this identification, we use the Penrose transform between bulk fields and twistor functions, together with its holographic dual that relates twistor functions to boundary sources. In the resulting picture, the interaction between two Didenko-Vasiliev particles is just a geodesic Witten diagram that calculates the correlator of two boundary bilocals. We speculate on implications for a possible reformulation of the bulk theory, and for its non-locality issues.


2006 ◽  
Vol 15 (05) ◽  
pp. 717-736
Author(s):  
ORCHIDEA MARIA LECIAN ◽  
GIOVANNI MONTANI

The geometrization of the Electroweak Model is achieved in a five-dimensional Riemann–Cartan framework. Matter spinorial fields are extended to 5 dimensions by the choice of a proper dependence on the extracoordinate and of a normalization factor. U (1) weak hypercharge gauge fields are obtained from a Kaluza–Klein scheme, while the tetradic projections of the extradimensional contortion fields are interpreted as SU (2) weak isospin gauge fields. SU (2) generators are derived by the identification of the weak isospin current to the extradimensional current term in the Lagrangian density of the local Lorentz group. The geometrized U (1) and SU (2) groups will provide the proper transformation laws for bosonic and spinorial fields. Spin connections will be found to be purely Riemannian.


1989 ◽  
Vol 04 (19) ◽  
pp. 5119-5131 ◽  
Author(s):  
E. I. GUENDELMAN

Gravitational Bags are spherically symmetric solutions of higher-dimensional Kaluza Klein (K – K) theories, where the compact dimensions become very large near the center of the geometry, although they are small elsewhere. The K – K excitations therefore become very light when located near the center of this geometry and this appears to affect drastically the naive tower of the masses spectrum of K – K theories. In the context of string theories, string excitations can be enclosed by Gravitational Bags, making them not only lighter, but also localized, as observed by somebody, that does not probe the central regions. Strings, however, can still have divergent sizes, as quantum mechanics seems to demand, since the extra dimensions blow up at the center of the geometry. From a projected 4-D point of view, very massive string bits may lie inside their Schwarzschild radii, as pointed out by Casher, Gravitational Bags however are horizon free objects, so no conflict with macroscopic causality arises if the string excitations are enclosed by Gravitational Bags.


2003 ◽  
Vol 655 (1-2) ◽  
pp. 170-184 ◽  
Author(s):  
K. Farakos ◽  
P. de Forcrand ◽  
C.P. Korthals Altes ◽  
M. Laine ◽  
M. Vettorazzo

2012 ◽  
Vol 2012 (8) ◽  
Author(s):  
Marc Henneaux ◽  
Gustavo Lucena Gómez ◽  
Rakibur Rahman

2011 ◽  
Vol 844 (2) ◽  
pp. 348-364 ◽  
Author(s):  
Ruben Manvelyan ◽  
Karapet Mkrtchyan ◽  
Werner Rühl

Sign in / Sign up

Export Citation Format

Share Document